Introduction
How a balanced circuit differs from an unbalanced circuit
A balanced circuit has its electrical midpoint grounded. An unbalanced circuit, however, has one side grounded. A balanced circuit is typically used in communications equipment because a balanced circuit has the advantage of better spurious noise suppression.

Figure 1 shows a balanced cable which is an example of a balanced circuit. The voltages of the cable’s two conductors are at every point equal in amplitude and opposite in phase. Figure 2 shows an unbalanced cable which is an example of an unbalanced circuit. Most measurement circuits in Agilent Technologies’ impedance analyzers and LCR meters are unbalanced.

Measuring a balanced circuit with an unbalanced measurement instrument
A balanced circuit cannot be directly measured with an unbalanced measurement instrument because of the difference in their configuration.

When measuring balanced circuits, the unbalanced measuring instrument requires a balun (balanced to unbalanced) transformer. A balun is a type of impedance-matching RF transformer.

Figure 3 shows the configuration for measuring a balanced circuit with an unbalanced instrument.

Note: In balanced cable measurements, residual current in the balun or the measuring instrument can cause measurement errors. To reduce the degree of error, perform open/short and load compensation at the measurement terminals of the balun.

Selecting a Balun
There are several types and brands of balun transformers. When selecting a balun, ensure that frequency is compatible with your measurement requirements. When you measure the impedance parameters of a balanced circuit, you don’t have to use the balun which has the same impedance with the circuit under test. However, when you measure the transmission or reflection of it, you have to use a balun which has the same impedance with the circuit under test to keep impedance matching. Table 1 shows recommended balun transformers.
Measurement Configuration with a Balun and Compensation

Impedance measurement configuration with Agilent 4294A impedance analyzer

Figure 4 shows impedance measurement configuration (1)/(2) with the 4294A.

To calibrate/compensate for (1):
1. Perform open, short, and load compensation at the balanced terminals of the 16314-60011. Use the furnished compensation standards of the 16314-60011.

To calibrate/compensate for (2):
1. Assemble a female BNC connector as shown in Figure 5.

2. Perform open, short, and load calibration at the BNC connector using the following BNC Calibration standards:

<table>
<thead>
<tr>
<th>Standards</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Ω</td>
<td>04191-85300</td>
</tr>
<tr>
<td>50 Ω</td>
<td>04191-85302</td>
</tr>
<tr>
<td>50 Ω</td>
<td>04191-85301</td>
</tr>
</tbody>
</table>

Table 1. Recommended balun transformers

<table>
<thead>
<tr>
<th>Unb/Bal. (W)</th>
<th>Bandwidth</th>
<th>Type No.</th>
<th>Suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50:50</td>
<td>100 Hz to 10 MHz</td>
<td>16315-60011</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>50:100</td>
<td>100 Hz to 10 MHz</td>
<td>16316A</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>50:600</td>
<td>100 Hz to 3 MHz</td>
<td>16317A</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>50:50</td>
<td>0.1–125 MHz</td>
<td>0001BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>50:75</td>
<td>0.1–125 MHz</td>
<td>0101BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>50:100</td>
<td>0.1–125 MHz</td>
<td>0300BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>50:600</td>
<td>0.1–65 MHz</td>
<td>0700BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:50</td>
<td>0.1–100 MHz</td>
<td>1000BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:75</td>
<td>0.1–100 MHz</td>
<td>1100BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:100</td>
<td>0.1–100 MHz</td>
<td>1300BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:600</td>
<td>0.1–60 MHz</td>
<td>1700BB</td>
<td>North Hills Signal Processing</td>
</tr>
</tbody>
</table>

Transmission measurement configuration with a network analyzer

Figure 7 shows transmission measurement configuration (3) with a network analyzer.

To calibrate/compensate:
Short the terminals closest to the DUT to the signal out and to the test port, then perform response/thru calibration.
Figure 5. Assembling BNC connector

Figure 6. Measurement configuration (2)

Figure 7. Measurement configuration (3)
Appendix: Agilent Balun Transformer Information

The Agilent balun transformers are excellent interfaces for measuring balanced components or circuits. They can be used with unbalanced system measurement instruments such as impedance analyzers, LCR meters, and/or network analyzers (that are unbalanced system measurement instruments). Agilent offers the following balun transformers.

Agilent 16314-60011

The 16314-60011 can be directly connected to a 4-terminal-pair impedance analyzer or an LCR meter. High-accuracy impedance measurements of balanced devices can be made by using the OPEN/SHORT/LOAD characteristic. This unique feature of the Agilent impedance analyzer and LCR meters is performed at the binding posts by using the furnished shorting plate and a 50Ω load resistor.

- Wide frequency range (100 Hz to 10 MHz) is covered.
- Recommended instruments:
 - 4294A precision impedance analyzer
 - 4284A precision LCR meter
 - 4285A precision LCR meter
 - E4980A precision LCR meter

Agilent 16315-60011, 16316A, 16317A

- Reflection and transmission measurements of balanced devices and circuits can be measured with a network analyzer.
- With the furnished load resistor (50Ω, 100Ω, 600Ω) and short plate, calibration can be performed for high-accuracy measurements.
- Depending on the impedance of the device, balanced impedance of 50Ω, 100Ω, or 600Ω can be selected.
- Wide frequency range (100 Hz to 10 MHz (Agilent 16317A covers up to 3 MHz))

- Recommended instruments:
 - 4395A 500 MHz network/spectrum/impedance analyzer
 - 4396B 1.8 GHz network/spectrum/impedance analyzer
 - 4294A precision impedance analyzer

Figure 8. Agilent 16314-60011 and 16315-60011
Specifications

Specifications describe the instrument’s warranted performance over the temperature range of 0 to 50 °C (except where noted) and after 30-minute warm-up time.

Table 2. Agilent balun transformers specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>16314-60011</th>
<th>16315-60011</th>
<th>16316A</th>
<th>16317A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal configuration & nominal characteristic impedance</td>
<td>Balanced port</td>
<td>2 signal terminals and 1 ground terminal (signal terminal spacing: 14.0 mm)</td>
<td>Binding posts</td>
<td>50 Ω</td>
</tr>
<tr>
<td></td>
<td>Unbalanced port</td>
<td>4 BNC connectors</td>
<td>1 BNC connector</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>89(W) x 56(H) x 133 (D)</td>
<td>89(W) x 55(H) x 121 (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (g)</td>
<td>400 g</td>
<td>350 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 to 55 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating humidity</td>
<td>≤ 95% RH (@ 40 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-operation temperature</td>
<td>-40 to +70 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-operating humidity</td>
<td>≤ 90% RH (@ 65 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnished accessories</td>
<td>50 Ω load resistor</td>
<td>50 Ω load resistor</td>
<td>100 Ω load resistor</td>
<td>600 Ω load resistor</td>
</tr>
</tbody>
</table>

Supplemental Characteristics

Supplemental characteristics are intended to provide information useful in applying the instrument by giving non-warranted performance parameters.

Table 3. Agilent Balun transformers supplemental characteristics (at 23 ± 5 °C)

<table>
<thead>
<tr>
<th>Item</th>
<th>16314-60011</th>
<th>16315-60011</th>
<th>16316A</th>
<th>16317A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>100 Hz to 10 MHz</td>
<td>100 Hz to 3 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertion loss</td>
<td>≤ 1.0 dB (relative to the insertion loss at 100 kHz)</td>
<td>≤ ±1.5 dB (relative to the insertion loss at 100 kHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq. response</td>
<td>≥ 10 dB (100 Hz ≤ Freq. < 300 Hz)</td>
<td>≥ ±10 dB (100 Hz ≤ Freq. < 300 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return loss</td>
<td>≥ 20 dB (300 Hz ≤ Freq. < 7 MHz)</td>
<td>≥ 20 dB (300 MHz ≤ Freq. < 1 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 17 dB (7 MHz ≤ Freq. < 10 MHz)</td>
<td>≥ 15 dB (1 MHz < Freq. ≤ 3 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common mode loss</td>
<td>≥ 50 dB (100 Hz ≤ Freq. < 3 MHz)</td>
<td>≥ 50 dB (100 Hz ≤ Freq. < 1 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 45 dB (3 MHz ≤ Freq. < 5 MHz)</td>
<td>≥ 45 dB (1 MHz ≤ Freq. < 3 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 40 dB (5 MHz ≤ Freq. < 10 MHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

For more information on repair and calibration services, go to
www.agilent.com/find/removealldoubt

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 0820 87 44 11
Belgium 32 (0)2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0)10 855 2100
France 0825 010 700*
* 0.125 €/minute
Germany 01805 24 6333**
** 0.14 €/minute
Ireland 188 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0)20 547 2111
Spain 34 (91)631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0)118 9276201
Other European Countries:
www.agilent.com/find/contactus

Revised: March 27, 2008

Product specifications and descriptions in this document subject to change without notice.

Printed in USA, April 10, 2008
5091-4480E