Agilent and Academia

Electronic Measurement Solutions for Teaching Labs

Committed to helping you teach the engineers of tomorrow

Selection Guide

Anticipate — Accelerate — Achieve

Agilent Technologies
Table of Contents

1. Introduction ... 3

2. Agilent University Teaching Solutions
 General Electronics
 Analog Electronics Teaching Solution .. 4
 Analog Circuit Design Teaching Solution .. 5
 Electronic Instrumentation and Measurement Teaching Solution 6
 RF Microwave and Wireless Communications
 RF Circuit Design Teaching Solution .. 7
 Digital RF Communications Teaching Solution ... 8
 EMI and EMC Teaching Solution .. 9
 Antenna & Propagation Teaching Solution .. 10
 Digital and Embedded Systems
 Digital Systems Teaching Solution .. 11
 Digital Signal Processing Teaching Solution ... 12
 Embedded System Design Teaching Solution ... 13
 Microcontroller System Design Teaching Solution (8051) 14

3. Solutions Matrix .. 15

4. Software, Connectivity and Hardware ... 16

5. Obtaining Measurement Instruments .. 18

6. Resources, Partnerships and Collaboration ... 19
As the world’s premier measurement company, Agilent works in close collaboration with engineers, scientists, and researchers around the globe to meet the communications, electronics, life sciences, and chemical analysis challenges of today and tomorrow. Agilent is committed to providing innovative measurement solutions that enable our electronics and bio-analytical customers and partners—the leaders in their fields—to deliver the products and services that make a measurable difference in the lives of people everywhere. Agilent works closely with academia, government, and industry to provide the tools that enable development of new technology.

Agilent University Teaching Solutions

This selection guide is intended for university lecturers who need to develop new engineering courses or teaching labs. Agilent’s University Teaching Solution includes Agilent’s instruments and software, teaching slides, lab sheets and training kits. This complete solution will provide students with early exposure to industry-grade instruments and software. The teaching solutions are in a ready-to-teach package, which saves lecturers’ time in developing and updating courses to keep pace with the latest industry trends.
Analog Electronics Teaching Solution

Providing students with real-world semiconductor knowledge and applications.

Features:
- **Teaching slides on Analog Electronics**
 - Suitable for Electrical & Electronics Engineering, Mechatronics, Instrumentation & Control Engineering or Robotics classes.
 - Focuses on semiconductor fundamentals as well as circuit analysis and applications.
 - Sufficient to cover 1 semester’s curriculum subject on Analog Electronics.
 - Covers theoretical topics such as P-N junction & semiconductor diode, Bi-polar Junction Transistor (BJT), DC Biasing, transistor modeling, Small Signal Analysis, Field-effect transistor, Operational Amplifier, multi-vibrators, voltage regulators and oscillators.
 - Slides are in editable format for easy editing.
 - Covers theoretical topics for instrumentation.
- **Test & Measurement Instruments**
 - The lab experiments are designed to work with small footprint USB modular instruments or bench-top
 - U2701A USB Modular Oscilloscope, U2761A USB Modular Function Generator, U2741A USB Modular Digital Multimeter and E3631A Power Supply OR
 - Use of industry grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - Can also be used for research activities.
- **Training kit**
 - Designed specifically for class room labs to guide students on analog components functions.
 - Consists of Diode & Transistor module and Op-amp module.
 - Allow students to develop practical knowledge based on subjects learnt in lectures.
 - Works seamlessly with Agilent’s instruments.
- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on Analog Electronics.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Diode characteristics
 2. Rectifier circuit
 3. BJT characteristics
 4. DC biasing
 5. Practical Op-amp circuits
 6. FC Class A tuned amplifier analysis
 7. 555 multi-vibrator circuit
 8. Active Filter
 - Problem-based assignments.

To get more information on the Analog Electronics Lab Station, visit www.agilent.com/find/TeachAnalog
Analog Circuit Design Teaching Solution

Focuses on the areas of practical analog circuit analysis, design, and its applications.

Features:

- **Teaching slides on Analog Circuit Design**
 - Suitable for Analog Circuit Design classes.
 - Covers theoretical topics such as Resistor-Capacitor-Inductor Based Circuits, Review of Practical Circuit Analysis Techniques, Op-Amp Based Circuits Design and Bipolar Junction Transistor & MOSFET Circuits Design.
 - Slides are in editable format for easy editing.

- **Test & Measurement Instruments**
 - The lab experiments are designed to work with small footprint USB modular instruments or bench-top.
 - U2701A USB Modular Oscilloscope, U2761A USB Modular Function Generator, U2741A USB Modular Digital Multimeter and E3631A Power Supply OR
 - Standard and common instruments that can be shared with other labs.
 - Use of industry grade instruments provides students with hands-on exposure.

- **Training kit**
 - Consists of various standard circuits that can be used as building blocks to develop complete designs without the need to start from scratch.
 - The embedded audio player provides the flexibility to generate simple to complex audio signals.
 - Works seamlessly with Agilent’s instruments.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on Analog Circuit Design.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Designing a Voltage Regulator
 2. Designing an IR Transceiver Circuit
 3. Designing a BJT-based Amplifier
 4. Designing a FET-based Amplifier
 5. Designing Op-Amp based Precision Circuits
 6. Designing an Audio Equalizer
 7. Designing a High Sensitivity IR Detector
 8. Designing a High Precision Voltage Regulator

To get more information on the Analog Circuit Design Teaching Solution, visit www.agilent.com/find/TeachAnalogCircuit
Electronic Instrumentation and Measurement Teaching Solution

Excellent teaching solution for students to understand an end-to-end measurement system, which includes various sensors, signal conditioning circuits, op-amp circuits, and digital I/Os.

Features:

- **Teaching slides on Electronic Instrumentation & Measurement**
 - Suitable for Electrical, Microelectronics, Robotics, or Electronic Design classes.
 - Sufficient to cover 1 semester’s curriculum subject on Electronic Instrumentation and Measurement Techniques. It can also be used for Induction Program on Practical Measurement using Basic Instruments.
 - Slides are in editable format for easy editing.
 - Covers theoretical topics for instrumentation.

- **Test & Measurement Instruments**
 - The lab experiments are designed to work with small footprint USB modular instruments or bench-top.
 - U2701A USB Modular Oscilloscope, U2761A USB Modular Function Generator, U2741A USB Modular Digital Multimeter and E3631A Power Supply OR
 - Uses VEE software, a graphical language programming software that makes programming simple.
 - Use of Industrial grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - Equipment and software can also be used for research activities.

- **Training kit**
 - On-board circuits can be viewed easily, allowing students to understand how circuits are built and connected.
 - Allow students to develop practical knowledge based on subjects learnt in lectures.
 - Works seamlessly with Agilent’s instruments.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on Electronic Instrumentation and Measurement Techniques.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Using a Power Supply
 2. Using a Digital Multimeter
 3. Using a Function/Arbitrary Waveform Generator
 4. Using an Oscilloscope
 5. Measurement of Voltage and Current
 6. Measurement of Time-Dependent Signals
 7. Quality of Measurement 1
 8. Quality of Measurement 2
 9. Analog Signal Conditioning
 10. Measurement of Digital Signals
 11. Introduction to Data Flow Programming
 12. Measurement Automation
 - Problem-based assignments.

To get more information on the Electronic Instrumentation and Measurement Teaching Solution, visit www.agilent.com/find/TeachInstrumentation
RF Circuit Design Teaching Solution

This lab solution is carefully designed to explore the basics of RF circuits and communication.

Features:

- Teaching slides on RF Circuit Design
 - Suitable for RF & Communications Engineering, Telecommunications Engineering or Electronics Engineering classes.
 - Sufficient to cover 1 semester’s curriculum subject on RF Circuit Design.
 - Covers theoretical topics such as transmission line theory, RF/microwave network analysis, impedance transformation and matching, RF components analysis, and Small Signal Amplifier (SSA) theory and design.
 - Slides are in editable format for easy editing.

- Test & Measurement Instruments
 - Recommended setup for a complete Lab includes N9310A RF Signal Generator, N9320B RF Spectrum Analyzer, E5061A Vector Network Analyzer, N8973A Noise Figure Analyzer, N4000A Noise source, W1410L GENESYS RF Design & Simulation Software, and Agilent VEE Software.
 - Use of Industrial grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - VEE Programming software simplifies test automation.
 - GENESYS software allows for RF simulation and analysis.
 - Equipment and software can also be used for research activities.

- Training kit
 - The RF Transceiver training kit contains various RF modules forming the transmitter and receiver sections.
 - Each module can be studied independently, or can be mixed and matched with the other modules to form a subsystem.
 - Allow students to develop practical knowledge on Power Amplifier, Low Noise Amplifier, Mixer, Filter and Oscillator.
 - CAE design files in GENESYS format.
 - Works seamlessly with Agilent’s instruments.

- Lab sheets
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Sufficient to cover 1 semester’s practical exercise on RF Circuit Design.

- Lab sheets complement theoretical teaching topics.
- Experiment topics include:
 1. Scalar Offset calibration
 2. Power Amplifier Characterization – Gain, isolation, return loss, harmonic distortion
 3. Low Noise Amplifier Characterization – Gain, isolation, return loss, SWR, impedance
 4. Filter Characterization – Insertion loss, bandwidth, rejection
 5. Mixer Characterization – Conversion loss, RF-to-IF isolation, SWR, return loss.
 6. Synthesizer Characterization – Phase noise, frequency
 7. Antenna characterization – Gain, SWR, return loss, impedance

Problem-based assignments.

To get more information on the RF Circuit Lab Station, visit www.agilent.com/find/TeachRF
Digital RF Communications Teaching Solution

Expose students to digital communication signals theoretical learning with practical hands-on labs.

- **Features:**
 - **Teaching slides on Digital RF Communications**
 - Suitable for RF & Communications Engineering, Telecommunications Engineering or Electronics Engineering classes.
 - Sufficient to cover 1 semester’s curriculum subject on Digital RF Communications.
 - Covers theoretical topics such as Principles of Communications, Amplitude and Frequency modulation, Digital Modulation techniques, Transmitter and Receiver architectures.
 - Slides are in editable format for easy editing.
 - **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes 33220A Function/Arbitrary Waveform Generator, N9310A RF Signal Generator, N9320B RF Spectrum Analyzer, DS07000 Digital Oscilloscope, 89600 VSA Software, and Agilent VEE Software.
 - **Use of Industrial grade instruments** provides students with hands-on exposure.
 - **Various options available for specific needs.**
 - **Standard and common instruments** that can be shared with other labs.
 - **VEE Programming software simplifies test automation.**
 - **VSA software allows for RF simulation and analysis.**
 - **Equipment and software can also be used for research activities.**
 - **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Sufficient to cover 1 semester’s practical exercise on Digital Communications.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Maximum output power verification
 2. Spurious and harmonics signal measurement
 3. Occupied bandwidth measurement
 4. Modulation quality measurement (EVM, IW offsets, GSM signal)
 5. Harmonics analysis for GSM signal
 - **Problem-based assignments to allow further practical knowledge development.**

- **Training kit**
 - Allow students to understand effects of Amplifier and Filter on the output signal.
 - Allow students to generate and analyze standard modulation formats (BPSK, QAM, FSK) and wireless communication standards (GSM, DECT, CDMA).
 - Works seamlessly with Agilent’s instruments.

To get more information on the Digital RF Communications Lab Station, visit www.agilent.com/find/TechDigitalRF
EMI and EMC Teaching Solution

A ready-to-teach package covers the sources of EMI, fundamental theories, design practices to minimize EMI and EMI measurements.

Features:

- **Teaching slides on EMI and EMC**
 - Suitable for Electromagnetic Interference and Electromagnetic Compatibility classes.
 - Covers theoretical topics such as EMC fundamentals, Sources of electromagnetic interference, EMC regulations & standards, Measurement instruments usage and Good PCB design practices.
 - Slides are in editable format for easy editing.
 - Covers theoretical topics for instrumentation.

- **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes N9912A Portable RF Analyzer and DSOX2022A 200 MHz Oscilloscope.
 - Use of industry grade instruments provides students with hands-on exposure.
 - Equipment and software can also be used for research activities.

- **Training kit**
 - Consists of two modules — an EMI source module and an EM coupling module. Allowing students to understand the cause and effect of EMI in today’s high-speed PCB board design.
 - Able to analyze EMI from commonly found sources, such as a DC motor, high frequency signals, and high speed digital pulses generated by the EMI source module.
 - Designed specifically for classroom labs to guide students on instrumentation fundamentals.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Designed to enable students to perform various types of EMI/EMC measurements using industry-grade instruments.
 - Each lab exercise highlights an EMI mechanism, factors affecting that mechanism, and mitigation/suppression methods.

- **Experiment topics include:**
 1. Probing Techniques
 2. Digital Pulse Spectra and Rise Time Measurement
 3. Controlling Crosstalk: Frequency Domain Perspective
 4. Controlling Crosstalk: Time-Domain Perspective
 5. Controlling Common Impedance Coupling
 6. Controlling Radiated Emission from Cable and PCB
 7. PCB Signal Integrity
 8. Transfer Impedance Measurement

To get more information on the EMI and EMC Teaching Solution, visit www.agilent.com/find/TeachEMI
Antenna and Propagation Teaching Solution

A ready-to-teach package in the areas of antenna fundamentals, practical antenna design, and antenna measurement techniques.

Features:

- **Teaching slides on Antenna and Propagation**
 - Suitable for Telecommunications engineering or Antenna design classes.
 - Focuses on antenna fundamentals, practical antenna design, and antenna measurement techniques.
 - Sufficient to cover 1 semester’s curriculum subject on Antenna and Propagation.
 - Covers theoretical topics such as Introduction to Antennas, Antenna Parameters and Antenna Measurements, Microstrip Patch Antenna Design, Introduction to Wi-Fi, Bluetooth, and ZigBee and Portable Device Antennas.
 - Slides are in editable format for easy editing.
 - Covers theoretical topics for instrumentation.

- **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes N9912A Agilent Portable RF Analyzer.
 - Use of Industrial grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - Equipment and software can also be used for research activities.

- **Training kit**
 - Designed specifically for class room labs to guide students in the area of RF design and Telecommunications.
 - Consists of e transmitter module and the receiver module.
 - The Radiation Pattern Plotting (RadPat) software is also included with the training kit.
 - Allow students to develop practical knowledge based on subjects learnt in lectures.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on Antenna and Propagation.
 - Lab sheets complement theoretical teaching topics.

- **Test & Measurement Instruments**
 - Works seamlessly with Agilent’s instruments.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on Antenna and Propagation.
 - Lab sheets complement theoretical teaching topics.

- **Experiment topics include:**
 1. Familiarizing with the ME1300
 2. Antenna Impedance Measurement
 3. Radiation Pattern Measurement
 4. Antenna Gain Measurement
 5. Polarization Measurement
 6. Free Space Propagation
 7. Comparison of Antenna’s Characteristics
 8. Scale Model Measurement

To get more information on the Antenna and Propagation Teaching Solution, visit www.agilent.com/find/TeachAntenna
Digital Systems Teaching Solution

An excellent teaching aid for your Digital Systems classroom, utilizing Agilent’s performance oscilloscope, Altera’s Development and Education Board, and teaching material for both lecturers and students.

![Image of oscilloscope, Altera DE2 board, and Quartus II software]

Features:

- **Teaching slides on Digital Systems**
 - Suitable for Electronics Engineering, Robotics, Mecha-tronics, or Control Engineering classes.
 - Sufficient to cover 1 semester’s curriculum subject on Digital Systems.
 - Covers theoretical topics such as Logic Circuits design, Combinational and Sequential Circuits, Programmable Logic Devices (PLD), and Verilog Design for FPGA implementation.
 - Slides are in editable format for easy editing.

- **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes MSOX3012A Mixed Signal Oscilloscope, 16801A Logic Analyzer, B4656A FPGA Dynamic Probe for 16801A.
 - Use of Industrial grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - Equipment can also be used for research activities.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Sufficient to cover 1 semester’s practical exercise on Digital Systems.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Basic Logic design
 2. Serial Data and waveform generation
 3. Design optimization and pipelining
 4. Verilog design and simulation
 5. I/O Core interfacing and analysis
 6. Memory interfacing and analysis
 - Problem-based assignments to allow further practical knowledge development.

- **Training Kit**
 - Utilizes Altera DE1 or DE2 Development and Educational Board.
 - Enable students to implement typical digital system designs with various on-board I/O interfaces.
 - Works seamlessly with Agilent’s instruments.

To get more information on the Digital Systems Lab Station, visit www.agilent.com/find/TeachDigitalSystems
Digital Signal Processing Teaching Solution

An out-of-box solution for teaching digital signal processing, simulation, and hardware implementation using an FPGA platform.

Features:

- **Teaching slides on Digital Signal Processing (DSP)**
 - Suitable for Electronics Engineering, Robotics, Mecha-tronics, or Control Engineering classes.
 - Sufficient to cover 1 semester’s curriculum subject on DSP.
 - Covers theoretical topics such as Signal characteristics and digitization, Frequency Domain Analysis, Z-transform and filtering concepts, FIR and IIR Filter design, FPGA for DSP systems and Real-time DSP with FPGA.
 - Slides are in editable format for easy editing.

- **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes MSOX3012A Mixed Signal Oscilloscope and E5383A single-ended 17 channel Flying Leads.
 - Use of Industry grade instruments provides students with hands-on exposure.

- **Training Kit**
 - Utilizes Altera DE2 Development and Educational Board and DSP Builder.
 - Enable students to implement typical digital signal processing designs with various on-board I/O interfaces.
 - Works seamlessly with Agilent’s instruments.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Sufficient to cover 1 semester’s practical exercise on DSP.
 - Lab sheets complement theoretical teaching topics.

- **Various options available for specific needs.**
- **Standard and common instruments that can be shared with other labs.**
- **Equipment can also be used for research activities.**

- **Experiment topics include:**
 1. Time and Frequency Domain analysis
 2. Sampling Theorem and quantization
 3. Z-transform and filtering concepts
 4. FIR & IIR Filter design and implementation
 5. Real-time DSP
 6. Digital Signal generator
 7. FFT analyzer

- **Problem-based assignments to allow further practical knowledge development.**

- **Requires Matlab software with Simulink and Signal Processing Blockset (not included).**

Recommended software:
Altera Quartus II, Altera DSP Builder and Matlab Simulink

To get more information on the Digital Signal Processing Lab Station, visit www.agilent.com/find/TeachDSP
Embedded System Design Teaching Solution

A ready-to-teach package in 32-bit ARM-based processor system design, programming, and applications.

Features:
- **Teaching slides on Embedded System Design**
 - Suitable for Embedded System Design class.
 - Focuses on ARM processor fundamentals, ARM hardware architecture, programming and applications.
 - Sufficient to cover 1 semester’s curriculum subject on Embedded System Design.
 - Covers theoretical topics such as ARM Processor Programmer Model, ARM and Thumb Instruction Set, ARM Exceptions Handling and Vectored Interrupt Controller, ARM AMBA Bus, ARM Memory System and Introduction to the Embedded Operating System.
 - Slides are in editable format for easy editing.
 - Covers theoretical topics for instrumentation.

- **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes MSOX3012A Mixed Signal Oscilloscope.
 - Use of Industrial grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - Equipment and software can also be used for research activities.

- **Training Kit**
 - 2 training kits available: ARM9 and Cortex-M3.
 - Enable students to work on typical ARM-based projects and assignments with various on-board I/O interfaces.
 - Utilizes open source GNU-based ARM toolchain software for code entry, compilation and debugging.
 - Allow students to develop practical knowledge based on subjects learnt in lectures.
 - Works seamlessly with Agilent’s instruments.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on Embedded System Design.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Eclipse IDE for the Embedded ARM9 Development Board
 2. Assembly Programming for ARM
 3. Assembly Programming for Cortex-M3
 4. Introduction to C Programming
 5. ARM I/O Programming
 6. ARM Interrupt Programming
 7. ARM Peripherals Programming
 8. Introduction to Embedded Operating System Programming
 9. LCD interfacing
 10. Timer UART
 - Problem-based assignments.

To get more information on the Antenna and Propagation Teaching Solution, visit www.agilent.com/find/TeachEmbeddedSystem
Microcontroller System Design Teaching Solution

A ready-to-teach package in microcontroller fundamentals, programming languages, and applications.

Features:
- **Teaching slides on Microcontroller System Design**
 - Suitable for Electrical, Microelectronics, Robotics, or Electronic Design classes.
 - Focuses on microcontroller fundamentals, programming languages, and applications.
 - Sufficient to cover 1 semester’s curriculum subject on 8051 Microcontroller Systems Microprocessor and Interfacing Systems.
 - Covers theoretical topics such as Introduction to Microcontroller, 8051 Microcontroller and the Assembly Language, I/O, Timer, and Counter Operations, Serial Port Operations, Interrupt Operations and C Programming for 8051.
 - Slides are in editable format for easy editing.
 - Covers theoretical topics for instrumentation.

- **Test & Measurement Instruments**
 - Recommended setup for a complete Lab includes MSOX3012A Mixed Signal Oscilloscope.
 - Use of Industrial grade instruments provides students with hands-on exposure.
 - Various options available for specific needs.
 - Standard and common instruments that can be shared with other labs.
 - Equipment and software can also be used for research activities.

- **Training Kit**
 - Enable students to work on various 8051-based projects and assignments.
 - Consists of the 8051 Microcontroller Module and three application modules (Elevator Simulator, User Interface, and Temperature Control).
 - Allow students to develop practical knowledge based on subjects learnt in lectures.
 - Works seamlessly with Agilent’s instruments.

- **Lab sheets**
 - Guided steps and procedures to be used with the Training Kit and Agilent’s instruments.
 - Lab sheets are in editable format.
 - Sufficient to cover 1 semester’s practical exercise on 8051 Microcontroller Systems Microprocessor and Interfacing Systems.
 - Lab sheets complement theoretical teaching topics.
 - Experiment topics include:
 1. Familiarizing with the 8051 Microcontroller Module
 2. Arithmetic, Logical, and Branching Operations
 3. I/O Operations
 4. LCD Interfacing
 5. External Memory Interfacing
 6. DC Motor, Proximity Sensor, and 7-Segment Display Interfacing
 7. Elevator Simulation
 8. ADC and DAC Interfacing
 9. Operating System Programming
 - Problem-based assignments.

To get more information on the Microcontroller System Design Teaching Solution, visit www.agilent.com/find/TeachMPU8051
Below is a summary of Agilent’s University Teaching Solutions and the recommended instruments and software for the respective labs.

<table>
<thead>
<tr>
<th>Subjects and Applications</th>
<th>Power Supply</th>
<th>Digital Multimeter</th>
<th>Function Generator</th>
<th>Digital Signal Oscilloscopes</th>
<th>Mixed Signal Oscilloscope</th>
<th>Network Analyzer</th>
<th>Logic Analyzer</th>
<th>Signal Generator</th>
<th>Spectrum Analyzer</th>
<th>Noise Figure Analyzer</th>
<th>Agilent VEE</th>
<th>8060A VSA Software</th>
<th>ADS/Genesys</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Electronics</td>
<td></td>
</tr>
<tr>
<td>Analog Electronics</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachAnalog</td>
<td></td>
</tr>
<tr>
<td>Analog Circuit Design</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachAnalogCircuit</td>
<td></td>
</tr>
<tr>
<td>Instrumentation and Control Systems</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachInstrumentation</td>
<td></td>
</tr>
<tr>
<td>RF Microwave and Wireless</td>
<td></td>
</tr>
<tr>
<td>Digital RF Communications</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachDigitalRF</td>
<td></td>
</tr>
<tr>
<td>RF Circuit Design</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachRF</td>
<td></td>
</tr>
<tr>
<td>Antenna and Propagation</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachAntenna</td>
<td></td>
</tr>
<tr>
<td>EMI and EMC</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachEMI</td>
<td></td>
</tr>
<tr>
<td>Digital and Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>Digital Systems</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachDigitalSystems</td>
<td></td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachDSP</td>
<td></td>
</tr>
<tr>
<td>Embedded System Design</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachEmbeddedSystem</td>
<td></td>
</tr>
<tr>
<td>Microcontroller System Design (8051)</td>
<td></td>
</tr>
<tr>
<td>http://www.agilent.com/find/TeachMPU8051</td>
<td></td>
</tr>
</tbody>
</table>

FREE pre-written lab experiments on the most popular subjects available from www.agilent.com/find/freelabs
Software, Connectivity and Hardware

In addition to high quality hardware, Agilent also provides software and connectivity solutions.

Software

Agilent provides software that complements and augments the measurement hardware. The hardware solutions typically come with free software utilities to help simplify instrument operation. Agilent provides software for your entire design and test cycle – from simulation up to analysis and display of the data. Below is a small sampling of the software that Agilent provides.

● Automation and control
 ● Agilent VEE Pro is graphical language programming software that makes programming simple. It works seamlessly with hardware and software from virtually all companies, so you can feel confident that your program is flexible, expandable and compatible with the latest industry standards. www.agilent.com/find/vee

 ● RF circuit and device simulation
 ● GENESYS – low cost, easy to use electronic design automation (EDA) software for RF simulations. It enables designers to prove out the design first in software before implementing it in hardware.

 ● Advanced Design Software (ADS) – EDA software for RF simulation with the most flexibility and capability. www.agilent.com/find/eesof

 ● Signal creation for arbitrary waveform generators
 ● Signal Studio – create test signals for wireless devices that are based on common cellular and wireless networking communication standards or customized signals. www.agilent.com/find/signalstudio

 ● SystemVue ESL software
 ● SystemVue is a focused electronic design automation (EDA) environment for electronic system-level (ESL) design. It enables system architects and algorithm developers to innovate the physical layer (PHY) of wireless and aerospace/defense communications systems and provides unique value to RF, DSP, and FPGA/ASIC implementers. As a dedicated platform for ESL design and signal processing realization, SystemVue replaces general-purpose digital, analog, and math environments. www.agilent.com/find/systemvue

 ● Vector signal analysis
 ● The 89600 VSA software is powerful PC-based software offering the industry’s most sophisticated general purpose and standards specific signal evaluation and troubleshooting tools for the R&D engineer. Reach deeper into signals, gather more data on signal problems, and gain greater insight. www.agilent.com/find/89600

 ● Utility software applications for individual instruments
 ● IntuiLink – utility that launches a tool bar in Microsoft® Word and/or Excel software that enables waveform creation, data logging and analysis, screen shot capture, remote control and more.

 ● Easy instrument connectivity with Agilent Open
 ● Many of Agilent’s instruments are based on open industry standards computer/instrument connectivity.
Computer/instrument connectivity

Agilent pioneered instrument-to-computer connectivity in 1970, creating the HPIB (Hewlett-Packard Interface Bus) interface which was later standardized as the general purpose interface bus (GPIB). With a GPIB instrument, a special interface card needs to be installed in your PC to enable connection to the PCI bus. Alternatively, you can use the Agilent 82357B USB to GPIB converter to connect directly from the instrument to the USB interface on the PC.

Newer instruments now come with USB and LAN interfaces, which enable you to connect directly to your PC without having to install any special hardware on your computer. LXI is a new connectivity standard, which provides robust connectivity via LAN. LXI Class C instruments have an internal web server for remote access and control. This is useful for distance learning.

www.agilent.com/find/lxi

www.agilent.com/find/connectivity
Obtaining Measurement Instruments

Affordable measurement solutions for teaching and research labs

Agilent’s measurement products have a long history of use in teaching and research labs. Agilent offers the widest selection of test equipment in industry.

It is the same affordable, full-featured set of test and measurement tools used by professionals, which better prepares students for when they transition into industry.

- Software, data acquisition, test systems
- Oscilloscopes, analyzers, meters
- Generators, sources, supplies
- Nanoscale microscopy, positioning and optics
- Lightwave, optical test equipment
- Wireless device test sets and wireless solutions
- Wireline communications test equipment

Wide range of purchase options

Alternative financing options such as leasing or longer-term rentals are available through Agilent’s finance partners.

Rent – If you need the latest technology for only a few months to run a specialized test, rent it.

Lease – By leasing instead of buying, you acquire the latest technology and capabilities without the risks associated with equipment ownership. Pay little or nothing initially and pay fixed payments for the contract term. We can also structure your lease plan to include software and services or modify it as your business needs change.

Finance – If you cannot make a large capital investment, work with one of Agilent’s financing partners to spread your investment while making payments at a competitive rate. Preserve capital for other opportunities. You can also finance software and third-party hardware and services.

Save even more money with Agilent CertiPrime

Fully remanufactured test equipment

Buy fully remanufactured test equipment that is like new, except for the price. It costs less but still has the same performance as if it were new. These refurbished products cost 20% to 50% less than our new products. All products come with the same warranty, support, return policy, and standard accessories as new models, plus the latest compatible firmware and software.

Sell or trade your old equipment

Why not sell or trade it in on updated equipment – whether they’re ours or another vendor’s. You’ll boost available cash or receive credit you can use as money down on new products and services.

Distributors provide fast delivery

Get fast product delivery working through Agilent’s authorized distributors. Our distributors work in close collaboration with Agilent to provide the solutions you need. Some Agilent products are only available through an Agilent authorized distributor.
Resources, Partnerships and Collaboration

Educator’s Corner

www.agilent.com/find/edu

Free resources are available from the Educator’s Corner Web site, which contains downloadable teaching material, experiments, information about lab equipment, and more.

Free resources from Educator’s Corner Web portal

Educator’s Corner is a dedicated Web site that provides a one-stop education resource to lecturers, researchers and students looking to enhance their higher education curriculum and research capabilities. Various tools and resources can be downloaded for free.

- Teaching tools
- Lab experiments
- Java animations
- Computer based training
- Application notes
- Webcast seminars
- Journal articles
- Engineering cartoons
- Student resources
- Information on educational discounts and promotions

www.agilent.com/find/edu

Research partnerships and collaboration

As the world’s premier measurement company and a committed global citizen, Agilent takes an active role in supporting higher education and research.

We are committed to furthering science and technology by developing strategic partnerships with universities and research labs worldwide. We work with these universities to develop technology in areas of mutual interest.

www.agilent.com/find/research

Jobs for students and new graduates

Agilent builds relationships with universities to recruit top talent college hires. Each year, we hire hundreds of the best students around the world for internships and full-time employment. The new ideas that college hires bring to Agilent challenges the status quo by testing long-held beliefs. This clash of ideas ignites the spark of innovation.

www.agilent.com/go/jobs

Special programs, promotions and discounts

Agilent collaborates with universities and creates special programs to meet their needs: assistance with laboratory openings, mutual positive exposure through communications, and industry networking opportunities.

www.agilent.com/find/edupromo

Order your FREE updated, Research Resources DVD, Educator’s Corner CD-ROM and posters

Educator’s Corner CD

www.agilent.com/find/edutools

Research Resources DVD

www.agilent.com/find/researchDVD
Agilent Advantage Services is committed to your success throughout your equipment’s lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries:

www.agilent.com/find/contactus

Revised: January 6, 2012

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2012
Published in USA, April 2, 2012
5989-7309EN