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Phase noise and jitter are two related quantities associated with a noisy oscillator. Phase noise is
a frequency-domain view of the noise spectrum around the oscillator signal, while jitter is a time-
domain measure of the timing accuracy of the oscillator period. This paper discusses the
relationship between phase noise and jitter in free-running oscillators. The reader is referred to
three other papers for a more detailed look at the theory: Demir [1], Hajimiri [2] and Herzel [3].
The phase noise and jitter theory discussed here is mainly taken from these three papers. The
jitter in a closed-loop phase-locked loop is not discussed here; see [4, 9, 10].

1 Phase Noise as a Lorentzian Spectrum
We usually observe the asymptotic behavior of phase noise £ measured at an offset frequency f
from the carrier and assert that:
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where a is some constant. But this implies that phase noise goes to infinity at f=0. This is
obviously wrong, as it implies that there is infinite noise power at f=0. For very noisy oscillators,
it could also suggest that £>0 dBc/Hz at small enough offsets. But phase noise has been shown to
have a Lorentzian spectrum:
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where c is a scalar constant that describes the phase noise of the oscillator (in the absence of 1/f
noise and ignoring any noise floor). This choice of expressing the characteristic constant as

cfosc
2π  will become clear when the constant c is reused in the equations for jitter.

The Lorentzian spectrum nicely avoids any singularities at f=0 while maintaining the same
asymptotic behavior. It also has the property that the total power in £ from minus infinity to plus
infinity is 1. This means that phase noise doesn’ t change the total power of the oscillator, it
merely broadens its spectral peak. If we borrow some terminology from laser technology (lasers
are just optical oscillators), we can talk about the spectral line width of an oscillator (also half
power width, full width at half maximum, or –3dB width):

cfff oscHWFWHM
222 π== (3)

For quiet oscillators, the phase noise at offset frequencies greater than 1 Hz will always be less



Phase Noise and Jitter 17 May 2001

Agilent EEsof EDA 2

than 0 dBc/Hz, avoiding the embarrassing question of what a phase noise greater than 0 dBc/Hz
means. At some very small frequency less than
1 Hz, the phase noise will be greater than
0 dBc/Hz, but only within a bandwidth of a
fraction of a Hertz. This is what we should expect,
to see something representing the carrier signal
itself at f=0, which in the absence of noise would
have a spectrum of ( )fδ . The plot to the right
shows the phase noise for 32 10−×= ππ cfosc . We
do see phase noise greater than 0 dBc/Hz, but
only at an offset frequency less than 0.03 Hz. The
total power integrated over a 1 Hz bandwidth still
unity.

For noisy oscillators, the phase noise will again always be less than 0 dBc/Hz, but this gives us a
spectral line width that is greater than 1 Hz. The phase noise goes flat below fHW, showing the
wide spectral line width of the oscillator due to
high phase noise. (Note: this does not equate to
the problem we have observed in the ADS phase
noise simulation where the pnmx phase noise goes
flat below some small offset frequency.) The plot
to the right shows the phase noise for

32 10+×= ππ cfosc . Note if we were to extrapolate
from the phase noise at 100 kHz, we would get a
phase noise of +30 dBc/Hz at an offset frequency
of 1 Hz. But this doesn’ t make sense that the noise
is stronger than the carrier. Instead the carrier is
broadened over a 6.3 kHz (two-sided) bandwidth.

2 Jitter
We intuitively know that jitter is a variation in the zero-crossing times of a signal, or a variation
in the period of the signal. But a variation with respect to what? There are several different types
of jitter than can be defined [1,3]; they will subscripted them to distinguish between them.

Jitter is a statistical measure of a noisy oscillation process. The period of each cycle of the
oscillator is different, due to the noise-induced jitter. We will refer to nτ  as the period of cycle n.
For a free-running oscillator with noise, the oscillation period will have a Gaussian distribution.
This distribution has a mean avgτ , whose inverse can be defined as the average frequency of
oscillation avgoscf τ1= . The distribution also has a standard deviation, which we will later
define as the cycle-to-cycle jitter cσ . Jitter is defined as an rms quantity.

2.1 Absolute Jitter
The first type of jitter is absolute, or long term, jitter, ( )tabsσ . This type of jitter has an interesting
property in that it is a function of time. It is given by the sum of each periods variation from the
average:
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This value varies with the observation time, and the variance of this measure diverges as t goes
to infinity. This is not a very useful measure for free-running oscillators as it does increase with
time. This measure is more often used with PLLs, because a PLL has a phase reference source
that resets the jitter, which a free-running oscillator does not have.

Another way of expressing the dependence on this form of jitter on the measurement time is to
express it as [1]:

( ) cttabs =2σ (5)

where c is the same oscillator noise constant used in the phase noise formulations (2) and (3).
This jitter accumulates over time in a free-running oscillator because “any uncertainty in an
earlier transition affects all the following transitions, and its effect persists indefinitely”  [2]. The
sources of jitter are normally assumed to be uncorrelated, both between devices and between
successive observations of each oscillator period. The variances ( 2σ ) add for uncorrelated
random variables.

2.2 Cycle-to-Cycle Jitter
This is the jitter definition that most people mean when they talk about jitter as a single number.
Herzel calls it cycle jitter; Demir and Hajimiri call it cycle-to-cycle jitter. Other authors simply
call it rms cycle jitter or the jitter in one clock cycle. The cycle jitter measures the variance of
each period to the average period:
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This too can be defined in terms of the oscillator noise constant c as well as in terms of the
absolute jitter:
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It describes the magnitude of the period fluctuations but contains no information on the long-
term dynamics due to 1/f noise. If 1/f noise modulates the noise, the period will vary slowly and
this form of jitter will not display it. See section 4 for more discussion of 1/f noise and jitter.

Herzel [3] defines another type of jitter as cycle-to-cycle jitter, in contrast to everyone else’s use
of this term for the jitter cσ  defined above. Herzel’s cycle-to-cycle jitter measures the variance

between successive periods. This is a measurement of the jitter between successive periods:
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3 Equating Phase Noise to Jitter
In the absence of 1/f noise in a region where the phase noise displays a –20 dBc/Hz slope, the
rms cycle jitter can be related to the phase noise by:
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Example: A 141 MHz oscillator has a phase noise of –56.75 dBc/Hz at a 1 kHz offset frequency.
This corresponds to a cycle-to-cycle jitter of 0.866 ps.

4 Colored Noise Sources
The previous discussions on phase noise and jitter were derived assuming there were no colored
noise sources in the oscillator, such as 1/f noise or burst noise. The situation changes when 1/f
noise is added to an oscillator.

4.1 Phase Noise
Phase noise no longer displays a Lorentzian spectrum when 1/f noise is present. There is no
closed-form expression for the phase noise spectrum in the presence of 1/f noise. The discussions
so far have concentrated on the case where the transistor models do not have any flicker noise.
The analytical models of [1, 2, 3] and the Lorentzian spectrum were derived in the absence of
flicker noise. But any physical transistor exhibits flicker noise, and this contributes to an increase
in oscillator phase noise at small offset frequencies. Flicker noise is several orders of magnitude
worse for MOSFETs than for BJTs. A BJT will typically display a flicker noise corner frequency
around 1 kHz, while in a MOSFET it will be around 1 MHz.

Only in the last few years have analytical models for phase noise with flicker noise been
proposed [5–8]. Herzel [5] decomposes the model into a Lorentzian for the white noise sources
and Gaussian for the flicker noise source. The final spectrum is then a convolution of a
Lorentzian with a Gaussian spectrum. Using Herzel’s notation:

( ) [ ] [ ]ωωγωσωπ
γ
ω ′−′′∆= ∫

∞

∞−

,,
4

2
,

, LGd
S

S PRvv
vv

NN

LL
(11)

where

[ ] )(
2

exp
2

1
, 2

2

GaussianG 







−=

σ
ω

σπ
ωσ (12)

[ ] )(
1

,
22

LorentzianL
ωγ

γ
π

ωγ
+

⋅= (13)

This spectrum is called a Voigt line profile, for which there is no analytical expression. It can
only be analyzed numerically. The numerical analysis of this integral has not yet been
implemented in ADS. It shares the property of the Lorentzian spectrum in that it has an
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integrated area of one: it conserves the overall power of the noiseless oscillator, and has a finite
value as the offset frequency approaches zero. At small offsets the spectrum looks like a
Gaussian when dominated by flicker noise; at larger offsets 31 f behavior is seen, followed by

21 f behavior.

Klimovitch’s [6, 7] mathematics is not as detailed as Herzel’s, but he shows the derivation of the
oscillator spectrum in the presence of flicker noise. He, too, obtains a Gaussian spectrum at small
offsets, but does not derive an expression for the full spectrum. The approach is not documented
enough to implement in a simulator at this point.

Demir [8] also considers the spectrum due to flicker noise. He first mathematically redefines 1/f
noise so it does not become infinite at 0=f , developing a stationary stochastic model for a
process which is really nonstationary. His mathematics are more complete but harder to follow;
(75) in his paper gives a spectrum which is composed of a Lorentzian convolved with another
complex spectrum. He derives approximations at 0=f  and 0>>f , but does not consider the
transition region between the Gaussian and Lorentzian spectra.

These new approaches [5–8] present a potential model for solving the general problem of phase
noise greater than 0 dBc/Hz when flicker noise sources are present. Herzel’s model [5] is most
amenable to inclusion in ADS, but further research needs to be done. Until this new model gets
implemented in ADS, the existing pnfm results can continue to be used at offsets where the
phase noise is less than 0 dBc/Hz. Problems with phase noise greater than 0 dBc/Hz occur only
in those oscillators that are inherently very noisy, such as ring oscillators.

4.2 Jitter
When 1/f noise is present, this lack of correlation between successive samples is no longer true.
“Low-frequency noise sources, such as 1/f noise, can also result in a correlation between induced
jitter on transitions over multiple cycles. In this case, the standard deviations rather than the
variances add. Therefore, the standard deviation of the jitter after t∆  seconds is proportional to

t∆ ”  [2].

One way of thinking of phase noise is to think of random noise sources at multiple frequencies
that are modulating the frequency of the oscillator, as if it was a voltage-controlled oscillator.
This modulation gives rise to sidebands which are viewed as phase noise in the frequency
domain. Consider a 1/f  noise event occurring at a some low frequency 1f . It will last for a time

11 1 ft ∝ . During one time interval it  to 1tti + , the noise event takes on a random value 1r  and
causes the oscillator period to change to 1δττ + . During another time interval jt  to 1tt j + , the
noise event takes on a random value 2r  and causes the oscillator period to change to 2δττ + .
Both of these oscillator periods are different than τ . If we measure the period statistics only
between it  and 1tti + , we will get a different mean period but the same standard deviation than if
we measure it between jt  and 1tt j + . Only if we measure the period statistics for an interval
greater than 1t  will variations in the period from the 1/f noise source be seen.

This jitter accumulates over time in a free-running oscillator because “any uncertainty in an
earlier transition affects all the following transitions, and its effect persists indefinitely”  [2]. The
sources of jitter are normally assumed to be uncorrelated, both between devices and between
successive observations of each oscillator period. The variances ( 2σ ) add for uncorrelated
random variables, but the standard deviations (σ ) add for correlated random variables.
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The absolute jitter observed for short periods of time less than the time associated with the 1/f
noise processes has the form ct  but the jitter observed for a time period longer than the time
associated with the 1/f noise processes has the form 2tκ :

( ) 22 tcttabs κσ += (14)

where κ  is another noise constant associated with the 1/f process in the oscillator. “ In practice,
both correlated and uncorrelated sources exist in a circuit, and hence a log-log plot of the timing
jitter ( )tabsσ  versus the measurement delay t for an open-loop oscillator will demonstrate regions
with slopes of 1/2 and 1”  [2].

Hajimiri [2] measured a CMOS ring oscillator that displayed 1/f noise. The 2.81 GHz oscillator
can be characterized by 1710819.3 −×=c
and 1010250.6 −×=κ . Phase noise of –95.2
dBc/Hz was measured at a 1 MHz offset.
The 1/f noise corner frequency was not
measured but should be less than 1 MHz.
The cycle-to-cycle jitter cσ  is 0.117 ps,
compared to an oscillator period of 356 ps.
The absolute jitter as a function of
measurement time is shown to the right. For
small measurement times the jitter is
proportional to the square root of the
measurement time, while for long
measurement times the jitter is proportional
to the measurement time.

Ignoring 1/f noise gives reasonable results when the jitter measurement time is less the reciprocal
of the 1/f noise corner frequency.

4.3 Equating Phase Noise to Jitter
There are three different equations that have been published in the literature for computing
absolute jitter from an arbitrary phase noise response.

Demir [8] gives (15) where ( )fS f,Φ  is the spectral density of phase fluctuations due only to the
flicker noise sources:
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Zanchi [4]:
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Hajimiri [2]:
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These are three different equations for computing absolute jitter from an arbitrary phase noise
response. To the author’s knowledge, no one has compared or validated any of them.
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