DDR Overview

Memory is everywhere – not just in servers, workstations and desktops, but also embedded in consumer electronics, automobiles and other system designs. With each generation of DDR SDRAM, short for Double Data Rate Synchronous Dynamic Random Access Memory, speeds increase, packages sizes decrease, and power consumption decreases (see Table 1). With these improvements comes the added challenge of decreased design margins, signal integrity, and interoperability.
The Joint Electronic Devices Engineering Council (JEDEC) has also introduced a new DDR standard for low-power DDR (LPDDR) or mobile devices (mobile-DDR). As the name implies, this standard uses lower signal amplitude, improving power consumption. Currently the standard meets the specifications for DDR1. Engineers will not need to re-design the link or protocol layer of devices to take advantage of the lower power consumption, since little investment is required to adjust the voltage level in the system.

<table>
<thead>
<tr>
<th>DDR standard</th>
<th>DDR</th>
<th>LPDDR or Mobile-DDR</th>
<th>DDR2</th>
<th>LPDDR2 or Mobile-DDR2</th>
<th>DDR3</th>
<th>LPDDR3 or Mobile-DDR3</th>
<th>DDR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>JESD79E</td>
<td>JESD209</td>
<td>JESD79-2E, JESD208</td>
<td>JESD209-2B</td>
<td>JESD79-3C</td>
<td>JESD209-3</td>
<td>JESD79-4</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>1.5 - 3.3V</td>
<td>1.8V</td>
<td>1.8V</td>
<td>1.6B</td>
<td>1.5V</td>
<td>1.2V</td>
<td>1.2V</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>100 - 200 MHz</td>
<td>100 - 200 MHz</td>
<td>200 - 400 MHz</td>
<td>100 - 533 MHz</td>
<td>400 - 800 MHz</td>
<td>667 - 800 MHz</td>
<td>800 - 1600 MHz</td>
</tr>
<tr>
<td>Data transfer rate</td>
<td>200 - 400 MT/s</td>
<td>200 - 400 MT/s</td>
<td>400 - 800 MT/s</td>
<td>200 - 1066 MT/s</td>
<td>800 - 1600 MT/s</td>
<td>1333 - 1600 MT/s</td>
<td>1600 - 3200 MT/s</td>
</tr>
<tr>
<td>Package type</td>
<td>This Small Outline Package (TSOP)</td>
<td>Fin Ball-Grid Array (FBGA)</td>
<td>Fin Ball-Grid Array (FBGA)</td>
<td>Fin Ball-Grid Array (FBGA)/POP</td>
<td>Fine Ball-Grid Array (FBGA)</td>
<td>POP</td>
<td>Fine Ball-Grid Array (FBGA)</td>
</tr>
<tr>
<td>Package size</td>
<td>x4, x8, x16, x32</td>
<td>x16, x32</td>
<td>x4, x8, x16</td>
<td>x16, x32</td>
<td>x4, x8, x16</td>
<td>x16, x32</td>
<td>x4, x8, x16</td>
</tr>
<tr>
<td>Backward compatibility</td>
<td>No</td>
<td>Yes, with DDR</td>
<td>No</td>
<td>Yes, with DDR2</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1. JEDEC defines the DDR specifications; however, JEDEC leaves the responsibility to designers or adopters to abide by the standards rather than enforcing compliance.
The DDR interface consists of signals for control, address, clock, strobe and data. AsFigure 1 shows, clock, address and control signals are transmitted one way from the memory controller to the DDR chip; strobe and data signals are bi-directional. In a read operation, the strobe and data signals are transmitted from the DDR chip to the memory controller. In a write operation, the signals move in the opposite direction.

To improve signal performance as data transfer rates increase and signal amplitude decreases, the clock and strobe signals are differential, which cancels out common mode noise. The other signals still operate in single-ended mode, which makes them more susceptible to noise, crosstalk and interference.

Figure 1. In the DDR Interface, clock, address and control signals move from the memory controller to the DDR chip, but strobe and data signals are bi-directional. Their direction depends on the operation being performed.
Common DDR Validation Challenges

Although faster speeds offer significant benefits, they also present issues that complicate design and validation. The goal is to manage these issues and ensure good signal integrity. Doing so guarantees system interoperability, improves device performance and allows greater design margins. Figure 2 summarizes the DDR memory development cycle and outlines the typical DDR validation challenges that designers and engineers face. See the collection of DDR tutorial documents for techniques and tools to tackle each of these challenges:

- Simulating device and interconnect validation
- Probing for physical layer and functional testing
- Testing signal integrity and debugging DDR failures
- Finding and identifying causes of data corruption and elusive failures
- Separating read/write signals for DRAM and controller validation
- Ensuring DDR compliance and interoperability

Simulating device and interconnect validation

When designers need to analyze their driver and receiver prior to having the silicon available, it can be difficult to see the behavior of these devices. This process is further complicated by the difficulty of getting accurate packet analysis results. How do you fully characterize and optimize your DDR memory designs in a single, integrated design environment?

See *Simulating Device and Interconnect Validation*, tutorial 5990-3317EN for more information.

Probing for physical layer and functional testing

JEDEC defines the DDR specifications at the ballout of the DRAM Fine Ball-Grid Array (FBGA) package. The ballout is located beneath the FBGA package, which makes it difficult to probe the signals for true compliance. Engineers commonly probe signals at vias or termination resistors, but this usually compromises measurement results. Undesirable effects come into play, including signal reflection, distortion and skew. How do you probe in a way that ensures you accurately see your signal’s behavior?

See *Probing for Physical Layer and Functional Validation*, Tutorial 5990-3182EN for more information.
Testing signal integrity and debugging DDR failures

To troubleshoot DDR device failures, engineers need to conduct root cause analysis. This can prove to be a tough and tedious task. Various design issues and system sources can cause failures, so time spent identifying and troubleshooting problems can delay a project schedule and time to market. With the right tools, you can quickly find the root causes of failures and fix them. Additionally, designers can analyze a signal down to an expected bit error rate. What tools are available to effectively identify and troubleshoot signal integrity and debug failures?

See Testing Signal Integrity in DDR Designs, Tutorial 5990-3189EN.

See Valid Data Window and Bit Error Rate testing for DDR Designs, Tutorial 5991-1581EN.

Finding and identifying causes of data corruption and elusive failures

There are times when tracking infrequent errors or events can be challenging because they do not happen regularly. What if a glitch happens once every 5 minutes which can only be observed in infinite persistence display mode? Without the ability to track it, the condition when the glitch happens cannot be fully understood. Some other scenarios include signal overshoot due to crosstalk when the adjacent signal transition or ISI failure due to specific DQ pattern. How do you find and debug intermittent errors?

See Identifying the Causes of Data Corruption and Elusive Failures, Tutorial 5990-3183EN for more information.

Separating read/write signals for DRAM and controller validation

The main DDR operations are read and write – but both operations use the same strobe and data lines for signal transmission. To characterize these signals’ electrical and timing parameters, you need to differentiate the complex traffic on the data bus for further analysis. The traffic consists of read data (output), write data (input) and high-impedance states (idle). Eight data buses constitute one data group which is source-synchronous to one strobe signal. To make things even more complicated, the write data is shifted 90 degrees from the read data with reference to the strobe signal edges, as Figure 3 shows. How can you easily and reliably separate the read and write cycles?

See Separating Read/Write Signals for DRAM and Controller Validation, Tutorial 5990-3187EN for more information.

Figure 3. The strobe is active only during data bursts. The read signal aligns with the strobe edges; the write signal centers on the strobe edges.
Ensuring DDR compliance and interoperability

The JEDEC specifications for DDR include a long list of measurements that must be carried out to ensure compliance. Engineers generally make the measurements manually, record the results and compare these with the specification to determine if the device is in compliance or not. Then the results need to be incorporated in a test report for sharing or archiving. This rigorous routine must be performed repeatedly for every revision or enhancement of the device. How can you reduce the time and effort required to ensure compliance and interoperability?

See Ensuring Compliance and Interoperability in DDR Designs, Tutorial 5990-3188EN for more information.

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Publication type</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR Design and Verification through Simulation</td>
<td>Tutorial</td>
<td>5990-3317EN</td>
</tr>
<tr>
<td>DDR Probing for Physical Layer and Functional Testing</td>
<td>Tutorial</td>
<td>5990-3182EN</td>
</tr>
<tr>
<td>Debugging Signal Integrity and Protocol Layers on DDR Designs</td>
<td>Tutorial</td>
<td>5990-3189EN</td>
</tr>
<tr>
<td>Identifying the Causes of DDR Data Corruption and Elusive Failures</td>
<td>Tutorial</td>
<td>5990-3183EN</td>
</tr>
<tr>
<td>Separating Read/Write Signals for DDR DRAM and Controller Validation</td>
<td>Tutorial</td>
<td>5990-3187EN</td>
</tr>
<tr>
<td>Ensuring Compliance and Interoperability in DDR Designs</td>
<td>Tutorial</td>
<td>5990-3188EN</td>
</tr>
<tr>
<td>Agilent DDR Memory Solutions</td>
<td>Tutorial</td>
<td>5990-3324EN</td>
</tr>
<tr>
<td>Valid Data Window and Bit Error Rate Testing for DDR Designs</td>
<td>Tutorial</td>
<td>5991-1581EN</td>
</tr>
</tbody>
</table>
Agilent Technologies Oscilloscopes

Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications
For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

- **Canada** (877) 894 4414
- **Brazil** (11) 4197 3600
- **Mexico** 01800 5064 800
- **United States** (800) 829 4444

Asia Pacific

- **Australia** 1 800 629 485
- **China** 800 810 0189
- **Hong Kong** 800 938 693
- **India** 1 800 112 929
- **Japan** 0120 (421) 345
- **Korea** 080 769 0800
- **Malaysia** 1 800 888 848
- **Singapore** 1 800 375 8100
- **Taiwan** 0800 047 866
- **Other AP Countries** (65) 375 8100

Europe & Middle East

- **Belgium** 32 (0) 2 404 93 40
- **Denmark** 45 45 80 12 15
- **Finland** 358 (0) 10 855 2100
- **France** 0825 010 700*
- **Germany** 49 (0) 7031 6333
- **Ireland** 1890 924 204
- **Israel** 972-3-9288-504/544
- **Italy** 39 02 92 60 8484
- **Netherlands** 31 (0) 20 547 2111
- **Spain** 34 (91) 631 3300
- **Sweden** 0200-88 22 55
- **United Kingdom** 44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus

Revised: October 11, 2012

Product specifications and descriptions in this document subject to change without notice.

Published in USA, December 14, 2012

5990-3180EN