

Ensuring Compliance and Interoperability in DDR Designs

Tutorial

Automating compliance measurements

The Joint Electronic Devices Engineering Council (JEDEC) specification requires a large number of test parameters to be verified for DDR compliance – a time-consuming exercise if you make the measurements manually. In addition to characterizing every test parameter, you must record the measurements and format them into a test report. To improve productivity, engineers need a way to automate measurements.

You can reduce the amount of time and effort spent characterizing your device against the JEDEC specification with automated DDR compliance test applications for oscilloscopes and logic analyzers. Using automated routines, you can repeat measurements of every test parameter many times to analyze the signal thoroughly and provide complete statistical results. You can also acquire screen captures of worst-case results. Many applications automatically generate comprehensive test reports for archiving or sharing. (See Figure 1.)

Figure 1. Agilent DDR compliance software provides a familiar and user-friendly interface to streamline test, debug and characterization of DDR designs.

For example, Agilent's DDR compliance test software lets you quickly perform automated measurements for low power DDR, DDR1, DDR2 and DDR3 specifications, review pass, fail and margin analysis results summarized in an HTML report, and check acquired data for protocol and timing violations. The analysis tool also executes several performance measurements.

Figure 2. Quickly perform automated measurements for low power DDR and DDR1, 2 and 3 specifications.

e View ≱⊑	Help PJE×D	r I								
Fesk Flow 💻	Set: Up Select Tests	Configure	Connect	kun Tests	Results Hmi	Report				
Call In	TestName				Worst Actual	Worst Mar	gin Spec	Range		-
mop	√ tCK(abs) Period P	sling Edge Me	esurements	. SCO MH2	3.642hs	21.8%	2.400	THE CH WALL	E K	
	/ tib(CC) Falling Ed	pe Measurery	nta, 800 M	te .	192.530pe	1.9%	-200.	000ps d= W	aL)	
¥.	ECR(avg) Falling Edge Measurements, 800 MHz			MHz	3.753ns	22.8%	2,500	2.500rs <= WALUE <		
elect Tests	X titl(par) Falling Ed	X titloor) Faling Edge Measurements, S00 MHz			130.952pc	-15.5%	-100.	-100.000ps c= \WLU		
-	√ terr(2per) Faling I	Edge Measure	ments, 800	MHz	-144.857ps	1.8%	-150.	-190,000ps cm VALU		
1	K ter (3per) Faling	X ter (3per) Faling Edge Measurements, 600 MHz			+193.337pc	5.2%	<i75.< td=""><td>DOOps o= W</td><td>U.</td><td></td></i75.<>	DOOps o= W	U.	
*	√ terr(4per) Faling I	√ terr(Aper) Falling Edge Measurements, 600 Mintz			-106.421ps	3.4%	-200.	000ps <= \¥	AU	
Configure	√ terr(Spor) Faling	J terr(Spor) Faling Edge Measurements, 800 MHz			-187.137pc	3.2%	-200.	-200.000ps c= VALU		
	√terr(6-L0per)FalingEdge Neasurements, 800 MHz			-164.401ps	22.6%	-300.	-300.000ps 4= VAUU			
V	/ ber (11-50per) Falling Edge Measurements, 800 MHz			S00 MHz	-231.468ps	24.3%	-450.	-450.000ps <= Will		
	Verr(nper) Falling Edge Measurements, S00 MHz			-291.468ps	24.9%	-450,	-450.000ps <= VALU			
Connect	√ bCH Average High	/ bCH Average High Measurements, 800 MHz			505mt(30),	30.0%	480m	480mtCR(arg) <= VA 480mtCR(arg) <= VA		
	/ bCL Average Low Measurements, 800 MHz X tpl(duty-high) Sitter Average High Measurements, / tpl(duty-low) Sitter Average Low Measurements, 8				492mb00(30.0%	480m			
V				mente,	100.466pm	-0.2%	-100.000ps <= VALU			
				-90.919ps	4.5%	-100.	~100,000ps <= \WUU			
CUN TRUES	Details: tjR(duty-l	w) Jitter A	rerage Lo	Measur	ements, 800	MHz				
	Summary	/ Suma	y Tri	al 2 (Morst	1					
	Triale: 2	· · · · · · · · · · · · · · · · · · ·	Actual	Margin	Mo	Изх	Abs. Diff	Average	Periods	Measur.
	Passed: 0 Ressect 2	Maan	-87.76pm	24521	-87.70pm	71.38pt	152.5pz	298.7E	28.55%	5277M
		Stdev	13.8904	6.9632	13.89ps	4.540fps	18.4305	822.6E	702 Te	347.4
	Provide Trial	Aurga	19 <i>84px</i>	28192	7984pz	6.432pe	26.07pz	1.173yr	7.080	200.0
	TLUE C	Min	-90,6300	4.547\$	-10.82ps	R. Mar	128.405	-209 AF_	28.838	\$277M
	Three In tals	Mar	-71.2800	14.884	-71.2807	74.580	765.501	882.2E	28.58	5.277M
	Jacom 0186	Sur	-162.200	75.975	-J6Z.2ps	142.704	374.915	1937.W	52 778	78.5594
	Modify	Ind	-90.91	4.5%	-90.9L	74.575ps	165.49	9005-275	26.583	5.2768

Figure 3. Review pass, fail and margin analysis results summarized in HTML format.

Figure 4. Check acquired data for protocol and timing violations. The analysis tool also executes several performance measurements.

C Fa III	2242	-	0.001						
				Cich fere to meet	nen seuer eneste				
functional h	Pertermance Analysis	Tiste In							
CAS Latency	1				Read/Write Stro	bes:	1004		
Additive Late	ncy: I				% with Data Tr	areitions:	505		
	-				Deta Bit Max Wi	dh:	1.67 cm		
Bind Stre					The second secon				
Burst Size: Thin Salart	1				Data Bit Min Wil	44-1	187 m		
Burst Size: Chip Select: Iesults:					Data Bit Min Wi Data Bit Avg Wi	dhi dhi	187m		
Burst Stee: Chip Salect: Iesuits: Show When I Command Read Read	Data Bit Width is	6 • • • • • •	ne Ond Taxe L 107201 res L 107201 res	Stacke Time 1.445723.cs 1.997765.cs	Data Bit Min Wi Data Bit Ang Wi Bits Heating Criteri Bits 19 4041 Bit 13, 4041	dfv dfv: <u>1 Bt Water</u> 1.67 m 1.67 m	187m	21	
Burst Stee Chip Select Iesuits Show When I Command Read Read Read Read Read Read Read	Data Bit Width Is Attives 0 1216 0 1200 0 1200 0 1200 0 1200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fit: Cand Fine L. 1072013 ee L. 1072023 ee L. 1072023 es L. 1072032 es L. 1072032 es	50x50x Time 1.962712 cs 1.992703 cs 2.823204 cs 2.82324 cs 1.952722 cs	Data B E Min With Data B E Arry With Beta Meeting Catwin Ref. 19, 9041 Ref. 19, 9041 Ref. 19, 9041 Ref. 19, 9041 Ref. 19, 9041	dty dty L676 L676 L676 L676 L676 L676	18/m	21	

Figure 5. Timing analysis to detect data width that doesn't match specification.

DDR Compliance Test Features and Capabilities

What features and capabilities will help you be the most productive when testing your devices for compliance with the JEDEC specification? Here's a checklist:

- Wizard-based user interface for quick setup, configuration and testing
- Automated clock, electrical and timing measurements based on JEDEC specifications
- Automated eye-diagram analysis with user-configurable mask testing
- Automated derating table analysis based on signal slew rate for setup and hold time measurements
- Multiple RANK testing built in to the application
- User-customizable speed for testing embedded design

- User-configurable signal threshold settings (for example: Vref, Vih and Vil parameters)
- Ability to repeat measurements based on user settings and receive results with statistical analysis of all runs and worst-case screenshots
- Results summary that includes results, specifications and margin analysis
- HTML test report automatically generated, including screenshots for easy sharing and archiving

Automating measurements provides the quickest way to characterize and validate integrity for DDR signals – and lets you shift your focus from making measurements to using the results to improve your designs.

Related Literature

Publication title	Publication type	Publication number
DDR Memory Overview, Development Cycle and Challenges	Tutorial	5990-3180EN
DDR Design and Verification through Simulation	Tutorial	5990-3317EN
DDR Probing for Physical Layer and Functional Testing	Tutorial	5990-3182EN
Debugging Signal Integrity and Protocol Layers on DDR Designs	Tutorial	5990-3189EN
Identifying the Causes of DDR Data Corruption and Elusive Failures	Tutorial	5990-3183EN
Separating Read/Write Signals for DDR DRAM and Controller Validation	Tutorial	5990-3187EN
Agilent DDR Memory Solutions	Brochure	5990-3324EN

www.agilent.com www.agilent.com/find/DDR

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

Product specifications and descriptions in this document subject to change without notice. For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

© Agilent Technologies, Inc. 2008 Printed in USA, December 19, 2008 5990-3188EN

Agilent Technologies Oscilloscopes Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications

Agilent Technologies