The InfiniiSim Waveform Transformation Toolset for Infiniium oscilloscopes is co-simulation software that derives transfer functions to convert, or filter, an acquisition to portray a waveform at a different circuit location or different circuit rendering than where probed.

Reasons to use InfiniiSim:
- De-embed fixtures or cables or switch networks that are placed between the oscilloscope and the device to be measured
- Embed cable models as required by several digital standards, or view signal degradation with an inserted element for link margin analysis
- View waveforms in physically un-probable locations
- Compensate for loading of probes or other circuit elements
- Compare different circuits by changing, adding or deleting circuit elements

This highly-configurable tool enables engineers to quickly do these things on their tool of choice, the oscilloscope.
How InfiniiSim works

InfiniiSim works by relating the transfer functions of two circuits to yield an overall transfer function between them. The two circuits (the ‘measurement circuit’ and ‘simulation circuit’) are defined by the user. The measurement circuit represents the measurement setup the user has on the bench, while the simulation circuit represents the circuit the user would like have. As an example, the measurement circuit shown in Figure 1 comprehends a source device being measured by an oscilloscope with a cable in between.

![Measurement Circuit](image1)

![Simulation Circuit](image2)

Figure 1. Measurement circuit versus simulation circuit

The simulation circuit has the cable removed. By relating the observation points in both circuits (the same location in this instance) to the source voltage, an overall transfer function that removes the effects of the cable results.

For the measurement circuit:

\[H_m(f) = \frac{V_{meas}(f)}{V_{src}(f)} \]

For the simulation circuit:

\[H_s(f) = \frac{V_{sim}(f)}{V_{src}(f)} \]

Relating the two to create the overall transfer function H(f):

\[H(f) = \frac{H_s(f)}{H_m(f)} = \frac{V_{sim}(f)/V_{src}(f)}{V_{meas}(f)/V_{src}(f)} = \frac{V_{sim}(f)}{V_{meas}(f)} \]

Such that:

\[V_{meas}(f) \cdot H(f) = V_{meas}(f) \cdot V_{sim}(f) = V_{sim}(f) \]

We now have a simulation result that indicates the measurement we would get if the cable was removed. This example is the simplest case that InfiniiSim handles. More blocks can be used in the simulations and other observation points considered.
Common use models for productivity

The InfiniiSim waveform transformation toolset provides default configurations for many common use models as well as general purpose configurations for the advanced user. These are identified and described as follows:

1. **Removal of channel element insertion loss (Advanced and Basic)**
 Description: one block of loss such as from a cable or fixture between a digital source and the oscilloscope. The inverse gain of the block (S_{21}^{-1}) is determined and its time response is convolved with the acquisition.

2. **Inserting a channel element insertion loss (Advanced and Basic)**
 Description: one block of loss such as from a standard cable model to be inserted before the oscilloscope. The S_{21} of the block is determined and its time response is convolved with the acquisition.

3. **Remove all effects of a channel element (Advanced only)**
 Description: Using S-parameter models of source and scope load, the effects of a channel element are totally removed. This is different from 1 above (removing insertion loss) in that the interactions between the elements are taken into account. This provides the most accurate way to remove a channel element.

4. **Add all effects of a channel element (Advanced only)**
 Description: Using S-parameter models of source and scope load with, a complete insertion of a channel element is performed. This is different from the Inserting a channel element insertion loss (#2 above) in that the reflective interactions between the elements are taken into account. This provides the most accurate rendering to insert a channel element such as a standard cable.

5. **Measurement plane relocation (Advanced only)**
 Description: Measurement plane relocation allows you to view any voltage waveform in a circuit as the circuit exists by moving the simulation node to any location you desire. This is an ‘in situ’ analysis so is not a ‘removal’ or ‘insertion’ viewpoint.

6. **Remove loading effects of oscilloscope probe (Advanced only)**
 Description: To remove the loading effects of a probe, a topology of circuit blocks is given that allows probe models to be considered in the measurement. An oscilloscope probe, while it might be defined as ‘high impedance’, really does have a loading effect on the circuit. This effect can be taken into account and removed.

7. **General purpose configuration (Advanced only)**
 Description: General topologies are provided for greater flexibility. General purpose probe, 6 block, and 9 block topologies are available with user defined measurement and simulation points and each block can be defined as having combinations of up to three elements in cascade or parallel arrangement so 27 total circuit elements can be defined for the most sophisticated scenarios.
Model your system as detailed as you need

InfiniiSim waveform transformation toolset offers a wide breadth of possibilities to suit your goals:

One block for simplest path compensation

Many times you will want simply to compensate for the loss of a channel element such as a cable or fixture. The one block model shown right gets this job done. It can also be extended to a remove/replace operation by changing simulation parameters.

Three block analysis for true channel element removal and insertion

When the most precision is required for a single channel element removal and insertion is required you will need at least the 3 block model. This model uses block descriptions for the transmitter and the oscilloscope as well as the channel to describe the full system. The inclusion of the transmitter and oscilloscope blocks enable most complete waveform rendering by including the reflective S-parameter elements in the mathematical calculation of the transfer function used to transform from the measurement, M to the simulated measurement, S.

General purpose configurations

The InfiniiSim waveform transformation toolset includes three general purpose topologies to enable detail tailoring of the description of your circuit. For probe modeling, the general purpose probe topology is used while for SMA differential probe usage, the general purpose 6 block model will find use in a majority of cases. For those very sophisticated applications, possibly using both high impedance probes and differential SMA probe heads, the general purpose model can be used to describe these complex scenarios.
Circuit models to define your setup

The InfiniiSim waveform transformation toolset provides a graphical user interface for you to define your system as you understand it and can be almost arbitrarily complex. This is accomplished through topology selection and circuit block definition. The most common circuit block definition is that of an S-parameter model which can be measured directly using a vector network analyzer, be derived from a time domain reflectometer with appropriate conversion software, or be created from a simulation tool such as the Advanced Design System. S-Parameters can be entered as two port models (.s2p files) or as 4 port models (.s4p files). Circuit descriptions such as R-L-C definition or ‘open’ and ‘thru’ are also available as are more complex blocks that result from cascaded or parallel combinations of circuit elements. The InfiniiSim waveform transformation software makes AC small signal linearity assumptions to derive transfer functions from an actual measured location (node) to another location that where you aim to simulate measurement. This location may physically exist but be unprobable, or may incorporate a circuit model not actually present. The transfer function is used to derive a time domain ‘filter’ that is convolved with the acquisition to transform the acquired waveform to a waveform at the desired location.

Figure 5. Sub-circuit capability: Any given InfiniiSim standard block can be described as a combination of sub-circuits.
Measurement and simulation circuits

The core of the InfiniiSim waveform transformation software is in defining two circuits: one that defines your measurement setup and the other to define what you desire to have as your measurement. The first we call the ‘measurement circuit’ and the second is the ‘simulation circuit’. These can be as simple as one block between the source and the oscilloscope load, or as complex as nine circuit blocks as in general purpose model. The simulation and measurement circuits share the topology selected, however, in many cases, circuit definitions for each block will be very different from measurement to simulation. This leads to great flexibility in transforming acquisitions at a measurement point to any other virtually probed location. For the circuit shown in Figure 6, for instance, Block ‘P’ has an S parameter file describing its loading during measurement, however, for simulation, the loading is desired to be eliminated, thus the ‘open’ designation.

See what you deserve to see

With the InfiniiSim waveform transformation toolset, you can see transformed signals in confidence whether channel elements are being inserted removed or whether the measurement plane is being relocated. Figure 7A below shows a waveform of a digital signal at 2.7 Gbs going through a combination of fixture and cable. Note that for the longer sequences of identical digits the waveform reaches a level that very different from when the data changes frequently. This is called ISI and is seen when the channel exhibits low pass filter characteristics. The fixture and cables were measured with a 4-port Vector Network Analyzer and removed using the channel element removal selection in InfiniiSim. Figure 7B depicts the results. Note the inset picture depicting the ‘before measurement’ directly at the transmitter versus the waveform in Figure 7A transformed using the 4-port channel model of the fixture.
Ordering information

To purchase the InfiniiSim software with a new or existing Infiniium Series oscilloscope, order the following options.

<table>
<thead>
<tr>
<th>Application</th>
<th>License type</th>
<th>Infiniium Z-Series</th>
<th>Infiniium 90000 Series</th>
<th>Infiniium S-Series</th>
<th>Infiniium 9000 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfiniiSim waveform transformation toolkit- advanced</td>
<td>Fixed</td>
<td>Factory-installed</td>
<td>N5465A-1FP</td>
<td>Option 014/N5465A-1NL</td>
<td>N5465A-1FP</td>
</tr>
<tr>
<td></td>
<td>Floating</td>
<td>Transportable</td>
<td>N5465A-1TP</td>
<td>—</td>
<td>N5465A-1TP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server-based</td>
<td>—</td>
<td>N5435A-027</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Floating</td>
<td>Transportable</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server-based</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>InfiniiSim waveform transformation toolkit- basic</td>
<td>Fixed</td>
<td>Factory-installed</td>
<td>N5465A-3FP</td>
<td>Option 013</td>
<td>N5465A-3FP</td>
</tr>
<tr>
<td></td>
<td>User-installed</td>
<td>N5465A-3FP</td>
<td>N5465A-002/N5465A-3NL</td>
<td>N5465A-3FP</td>
<td>N5465A-002/N5465A-3NL</td>
</tr>
<tr>
<td></td>
<td>Floating</td>
<td>Transportable</td>
<td>N5465A-3TP</td>
<td>N5465A-3TP</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server-based</td>
<td>—</td>
<td>N5435A-026</td>
<td>—</td>
</tr>
</tbody>
</table>

Related literature

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Publication type</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiniium DSO90000 and DSA90000 Series Oscilloscopes</td>
<td>Data sheet</td>
<td>5989-7819EN</td>
</tr>
<tr>
<td>Infiniium 9000 Series Oscilloscopes 4-Port</td>
<td>Data sheet</td>
<td>5990-3746EN</td>
</tr>
<tr>
<td>Infiniium 90000 X-Series Oscilloscopes</td>
<td>Data sheet</td>
<td>5990-5271EN</td>
</tr>
<tr>
<td>4-Port TDR/VNA/PLTS</td>
<td>Application note</td>
<td>5989-5764EN</td>
</tr>
<tr>
<td>Transforming Oscilloscope Acquisitions for De-Embedding, Embedding and Simulating Channel Effects</td>
<td>Application note</td>
<td>5990-9250EN</td>
</tr>
<tr>
<td>S-parameter Requirements for Oscilloscope De-Embedding Applications</td>
<td>Application note</td>
<td>5990-9869EN</td>
</tr>
<tr>
<td>ABCs of De-Embedding</td>
<td>Application note</td>
<td>5989-5765EN</td>
</tr>
</tbody>
</table>

For more information please go to www.Agilent.com/InfiniiSim/info

For copies of this literature, contact your Agilent representative or visit www.agilent.com/find/scope-apps
Agilent Technologies Oscilloscopes

Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications
myAgilent
www.agilent.com/find/myagilent
A personalized view into the information most relevant to you.

www.axiesticandard.org
AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

www.lxistandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

www.pxisa.org
PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty
www.agilent.com/find/ThreeYearWarranty
Beyond product specification, changing the ownership experience. Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide.

Agilent Assurance Plans
www.agilent.com/find/AssurancePlans
Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements.

www.agilent.com/quality
Agilent Electronic Measurement Group
DEKRA Certified ISO 9001:2008
Quality Management System

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

America
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
*0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries:
www.agilent.com/find/contactus

© Agilent Technologies, Inc. 2010, 2014
Published in USA, May 30, 2014
5990-4059EN