Conduct DVB-T/H Conformance Tests with Agilent’s Real-Time DVB-T/H Digital Video Solution

Application Note

Introduction

DVB-T is the most widely used digital television standard for terrestrial television transmissions. DVB-H is an extension of DVB-T, which is optimized for mobile television transmissions. They use OFDM technology and a range of specifications including:

- **3 modulation options (QPSK, 16QAM, 64QAM)**: There is a balance between the rate at which data can be transmitted and the signal to noise ratio that can be tolerated.
- **Different FEC rates**: Error correction uses convolutional coding and Reed Solomon coding with code rates of 1/2, 2/3, 3/4, 5/6, or 7/8, depending upon the requirements.
- **2k, 4k, or 8k carriers with four guard interval options**: 1/4, 1/8, 1/16, 1/32 to provide broadcasters with network planning flexibility.
- **5, 6, 7, or 8 MHz channel bandwidths** for variable available bandwidth and channel separation.

Agilent provides real-time and arbitrary DVB-T/H signal sources which fully support all of these features. Conformance test for DVB-T/H receivers can be conducted using the N5106A PXB, N7623B Signal Studio for digital video, and N5182A MXG.

This application note provides an introduction to the performance test requirements for DVB-T/H receivers, as defined in EICTA MBRAI 2.0, and describes test setup and configurations for N5106A PXB, N5182A MXG, and N7623B Signal Studio for digital video.
Table of Contents

Introduction ... 1
Overview of Requirements for Receiver Performance 3
PXB and N7623B in Brief .. 3
Test Setup and Configuration .. 4
 C/N performance ... 5
 Receiver minimum and maximum input signal levels 9
 Immunity to interference ... 10
 Guard interval utilization .. 12
 Tolerance to impulse interference 13
 GSM900 TX signal blocking test 15
 Mobile SFN channel test ... 16
Conclusions ... 17
Reference ... 17
Related Literature .. 17
Overview of Requirements for Receiver Performance

EICTA MBRAI 2.0\(^{(2,3)}\) includes system information as well as specifications for minimum RF performance. The defined conformance measurements include:

- C/N performance, including Gaussian, indoor, outdoor, and mobile environments
- Receiver minimum and maximum input signal levels
- Immunity to analog and/or digital signals in other channels
- Immunity to co-channel interference from analog TV signals
- Guard interval utilization: echoes within guard interval
- Guard interval utilization: echoes outside the guard interval
- Tolerance to impulse interference
- GSM900 TX signal blocking test
- Mobile SFN channel test

Four different degradation criteria are used in MBRAI 2.0 Part 2\(^{(3)}\):

a) Reference BER, defined as BER = 2 x 10\(^{-4}\) after Viterbi decoding
b) Picture failure point (PFP), defined as the C/N when picture errors become visible. This is preferred when BER measurements are unstable or unavailable.
c) Subjective failure point (SFP) in mobile reception
d) DVB-H error criterion: MPE-FEC frame error rate (MFER)

Some receivers can provide reference BER and some cannot, in which case b and c are used.

PXB and N7623B in Brief

The N5106A PXB baseband generator and channel emulator is a multi-channel baseband signal generator. At the heart of the PXB are its configurable DSP blocks which can be configured to act as baseband generators or faders to suit the test needs. The PXB has reconfigurable architecture with internal signal routing so it can be easily configured for different tests through the GUI and SCPI.

For DVB-T/H conformance testing, the PXB can be configured with one baseband card, including 2 DSP blocks. One DSP block can be used for real-time or arbitrary DVB-T/H signals; the other can be used for fading or interference signal generation if the dynamic range is enough, as with analog TV signals, GSM signals, etc. AWGN can also be added to the wanted signal in the PXB.

N7623B Signal Studio for digital video provides digital video signals for almost all main digital video standards, such as the DVB Series, CMMB, ISDB-T, and ATSC. The waveforms generated by N7623B can be downloaded and played back on the E4438C ESG, the N5182A MXG, and N5106A PXB. The memory size of the PXB is 512 MSa, so the playback time for DVB-T/H waveforms can be more than 1 minute, which is long enough for all the tests. Together with the PXB, N7623B can also provide real time DVB-T/H signal sources, in which the configurations for the DVB-T/H signals can be changed in real time. You can use the real time DVB-T/H signal sources as wanted signal and arb (arbitrary waveform) sources as interference signals.

Agilent also provides a tool, which works with MXG, to generate impulse noise for tolerance to impulse interference tests and provides analog TV signal waveforms which can be used as interference signals.
Test Setup and Configuration

Conformance testing requires wanted signals as well as impairments, such as interference signal, fading, and AWGN. The wanted DVB-T/H signal is generated by the N5106A PXB and then up-converted to RF frequency through the MXG.

Figure 1 shows the test system for C/N performance testing, receiver minimum and maximum input signal levels testing, guard interval utilization testing, and mobile SFN channel testing. Fading and AWGN can be added to the wanted signal in the N5106A PXB.

![Figure 1. Conformance test system 1](image1)

Figure 2 shows the test system for immunity to interference testing, tolerance to impulse interference testing, and GSM900 TX signal blocking testing. The wanted signal and the interference signals are combined at RF level. Only for immunity to interference testing, with patterns L1, L2, and L4 is the third MXG needed.

![Figure 2. Conformance test system 2](image2)

MBRAI conformance measurements supported by the above test systems are listed in the table below.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Test system</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N performance</td>
<td>Conformance test system 1</td>
</tr>
<tr>
<td>Receiver minimum and maximum input signal levels</td>
<td>Conformance test system 1</td>
</tr>
<tr>
<td>Immunity to interference test</td>
<td>Conformance test system 2</td>
</tr>
<tr>
<td>Guard interval utilizations</td>
<td>Conformance test system 1</td>
</tr>
<tr>
<td>Tolerance to impulse interference</td>
<td>Conformance test system 2</td>
</tr>
<tr>
<td>GSM900 TX signal blocking test</td>
<td>Conformance test system 2</td>
</tr>
<tr>
<td>Mobile SFN channel test</td>
<td>Conformance test system 1</td>
</tr>
</tbody>
</table>

Table 1. Test system for each measurement
Test Setup and Configuration, CONTINUED

The configurations for each model are listed in the following table.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5106A PXB – Option 186</td>
<td>612</td>
<td>2 DSP blocks on 1 baseband card</td>
</tr>
<tr>
<td></td>
<td>632</td>
<td>2 I/O ports - 2 analog I/Q out and 2 digital I/O on 1 I/O card</td>
</tr>
<tr>
<td></td>
<td>EFP</td>
<td>Baseband generation</td>
</tr>
<tr>
<td></td>
<td>JFP</td>
<td>Calibrated AWGN</td>
</tr>
<tr>
<td></td>
<td>QFP</td>
<td>Fading with SISO channel models</td>
</tr>
<tr>
<td>N5182A MXG</td>
<td>503</td>
<td>Frequency range from 250 kHz to 3 GHz</td>
</tr>
<tr>
<td>N5182A MXG (as interference 1)</td>
<td>503</td>
<td>503 Frequency range from 250 kHz to 3 GHz</td>
</tr>
<tr>
<td></td>
<td>652 or 654</td>
<td>Internal baseband generator</td>
</tr>
<tr>
<td></td>
<td>UNT</td>
<td>AM, FM, phase modulation</td>
</tr>
<tr>
<td></td>
<td>403</td>
<td>Calibrated AWGN</td>
</tr>
<tr>
<td></td>
<td>099</td>
<td>Expanded license key upgradeability</td>
</tr>
<tr>
<td></td>
<td>1EA</td>
<td>High output power with electronic attenuator (requires Option 099)</td>
</tr>
<tr>
<td>N5182A MXG (as interference 2 for analog interference)</td>
<td>503</td>
<td>Frequency range from 250 kHz to 3 GHz</td>
</tr>
<tr>
<td></td>
<td>651, 652, or 654</td>
<td>Internal baseband generator</td>
</tr>
<tr>
<td>N7623B Signal Studio for digital video</td>
<td>6FP</td>
<td>Connect to N5106A PXB</td>
</tr>
<tr>
<td></td>
<td>3FP</td>
<td>Connect to N5182A MXG (interference 1)</td>
</tr>
<tr>
<td></td>
<td>QFP</td>
<td>Advanced DVB-T/H (interference 1)</td>
</tr>
<tr>
<td></td>
<td>EFP</td>
<td>Advanced real-time DVB-T/H (in PXB)</td>
</tr>
</tbody>
</table>

Table 2. Configurations for each model

C/N performance

C/N performance testing is conducted to measure the receiver’s performance with the presence of fading and noise. C/N performance in Gaussian channel, portable channel, portable indoor (PI), portable outdoor (PO), and mobile channels are defined in the specifications.

Using test system 1, set the output of the MXG to make sure the power of the DVB-T/H signal is -50 dBm (at the receiver point) and the frequency is 666 MHz. DVB-T/H signals with QPSK, 16-QAM, 64 QAM and code rates of 1/2, 2/3, and 3/4 are needed.

C/N performance in Gaussian channel

The PXB can add AWGN signals to the wanted signal to simulate the Gaussian channel.

The following section first introduces the settings in the PXB, and then describes the measurement procedure.
PXB settings

1. Configure the PXB as shown in Figure 3. One DSP is used as the baseband generator to generate real time DVB-T/H signals.

2. Configure the basic DVB-T/H settings (for example), as shown in Figure 4, and load the payloads needed as shown in Figure 5. The TS file can be stored on the hard disk of the PXB.

3. Turn on AWGN and set the bandwidth of the Gaussian signals and C/N as shown in Figure 6. The Signal to Noise Ratio on the interface corresponds to the C/N defined in the specifications.

Measurement procedure

Decrease the C/N by changing the signal-to-noise ratio value in Figure 6 until the degradation criteria is met. If this C/N is lower than that defined in the specifications, it means the receiver passes this test. Repeat the measurements to cover all the cases defined in the specifications[2][3].

Figure 3. PXB configured as 1 channel

Figure 4. Basic DVB-T/H settings

Figure 5. Payload settings

Figure 6. AWGN settings in the PXB
C/N performance in fading channels

Fading channels include the portable channel, the PI/PO channel, and the mobile channel. This section first introduces the settings in the PXB, and then describes the measurement procedures.

PXB Settings

1. Configure the PXB as shown in Figure 7. Here, two DSP blocks are used, one DSP block to generate the baseband signal, and the other to simulate multi-path fading.

2. Set up the parameters for real-time DVB-T/H signals and load the payloads as shown in the example in Figure 8.

3. Choose the fading profiles to be used by exploring the channel models under Fader 1 Channel Model, DVB on the interface (see Figure 9). All the fading profiles defined in MBRAI 2.0 Part 1 have been preset in the N5106A PXB as shown in Figure 9, allowing users the convenience of selecting them directly instead of manually setting them up.
Note that for mobile channel profiles, you need to adjust the Doppler frequency as defined in the specifications under Fader 1 Paths, as shown in Figure 10. Figure 10 is an example of the predefined TU 6 channel profile under mobile reception.

4. Set up the C/N as shown in Figure 11.

Measurement procedure for the mobile channel

1. Set the Doppler frequency to 10 Hz as shown in Figure 10, then decrease the C/N by changing the signal-to-noise ratio value in Figure 11 until the degradation criteria is met. Record this C/N as “C/Nmin” which is for the TP4 point in MBRAI Part1.

2. Set the C/N to (specified C/Nmin + 3 dB), increase the Doppler frequency until the degradation criteria is met. Record this Doppler frequency as “Fd3dB”.

3. Turn off the AWGN as shown in Figure 6, increase the Doppler frequency until the degradation criteria is met. Record this Doppler frequency as “Fdmax”. Note that all C/Nmin, Fd3dB, and Fdmax need to meet the requirements in the specifications.

4. Repeat the measurement to cover all the cases defined in the specifications.

Measurement procedure for the portable and PI/PO channels

Decrease the C/N by changing the signal-to-noise ratio value in Figure 11 until the degradation criteria is met. If this C/N is lower than that defined in the specifications, it means the receiver passes the test. Repeat the measurement to cover all the cases defined in the specifications.

Figure 10. Doppler frequency settings in mobile channels

Figure 11. C/N settings
Receiver minimum and maximum input signal levels

The purpose of the receiver minimum and maximum input signal levels test is to measure the operational power range of DVB-T/H receiver under test. Refer back to Figure 1 to see this test system. The DVB-T/H signal to be tested is QPSK with a code rate of 1/2. The following section first introduces the settings in the PXB, and then describes the measurement procedures.

PXB settings

1. Configure the PXB as shown in Figure 12. One DSP is used as a baseband generator to generate real time DVB-T/H signals.
2. Set up the basic DVB-T/H settings and load the payloads as shown in the example in Figure 13.

Measurement procedure

In this test, the loss of the cable (X dB) connecting the MXG and the DVB-T/H receiver needs to be taken into consideration. The measurement procedure is as follows:

1. Decrease the power level of the MXG output until the receiver meets the degradation criteria. Record the power level as “Min.” The minimum input level is (Min-X) dB, which needs to be lower than that defined in section 6.2, MBRAI 2.0 Part 2[3].
2. Increase the power level to the defined maximum power level plus X dB. If the signal’s quality is above the degradation criteria, it means the receiver passes this test.
3. Repeat the measurement to cover all the frequencies defined in the specifications[3].
Immunity to interference

The immunity to interference test is conducted in order to ensure consistent receiver quality in the presence of strong interference neighboring the wanted signal channel.

The test system configuration in the immunity to interference test is shown in Figure 2. The interference signals are generated in one or two MXGs using their respective arbitrary waveform generators, together with the N7623B QFP advanced DVB-T/H option.

In MBRAI, immunities to S1, S2, L1, L2, L3, and L4 patterns and co-channel interference from analog TV signals are defined. Below, the patterns are described in two categories.

Category 1: Immunity to patterns S1, S2, L1, L2, L3, and L4 patterns and co-channel interference from analog TV signals, where one MXG is used to generate interference signals.

- **Pattern S1:** Analog interference signal on N+1 or N+2 at channel 45 (666 MHz) in UHF and channel 8 (199 MHz) in VHF.
- **Pattern S2:** Interference DVB-T/H signal on N+1 or N+2 at channel 45 in UHF and channel 8 in VHF.
- **Pattern L3:** One DVB-T/H interference signal on N+4 and another DVB-T/H interference signal on N+2 at channels 21, 45 and 64 in UHF and channel 8 in VHF. Use the multi-carrier function of N7623B QFP to generate these two interference signals in one waveform.
- **Co-channel analog interference at channel 45 in UHF.**

Category 2: Immunity to patterns L1, L2, and L4, where two MXGs are used to generate interference signals.

- **Pattern L1:** One analog interference signal on N+4 and one DVB-T/H interference signal on N+2 at channels 21 (474 MHz), 45 and 64 (818 MHz) in UHF and channel 8 in VHF.
- **Pattern L2:** One analog interference signal on N+4 and another analog interference signal on N+2 at channels 21, 45 and 64 in UHF and channel 8 in VHF.
- **Pattern L4:** One analog interference signal at channel 5 (177.5 MHz) and one DVB-T/H interference signal at channel 21, while the wanted signal is at channel 43 (650 MHz).

The wanted and interference DVB-T/H signals, as well as the analog signals in the test are outlined in the following example:

- **Wanted real-time DVB-T/H signals:** 2k mode, 16 QAM, 1/2 code rate, and 1/8 guard interval (generated by N7623B-EFP)
- **Interference DVB-T/H signals:** 2k mode, 16 QAM, 1/2 code rate, and 1/8 guard interval (generated by N7623B-QFP)
- **Analog signals:** PAL-D. Agilent provides PAL-D waveforms which can be loaded directly into the MXG.

The following section first introduces the settings in the PXB and the N7623B, and then describes the measurement procedure.
Setting up the PXB to generate wanted real-time DVB-T/H signals

1. Configure the PXB as 1 channel. One DSP is used as a baseband generator to generate real-time DVB-T/H signals.
2. Configure the basic DVB-T/H settings and load the payloads as shown in Figure 16.

Setting up the N7623B-QFP to generate DVB-T/H interference

The DVB-T/H interference waveform is generated with N7623B-QFP and then downloaded into the N5182A MXG, which can generate RF signals. Set up the parameters for DVB-T/H interference as shown in Figure 17.

Note that the N7623B-QFP supports multi-carrier functions. By setting the frequency offset on each carrier, you can generate DVB-T/H waveforms with multiple carriers for different channels. This function can be used to generate the DVB-T/H interference waveform on the N+2 and N+4 channels in pattern L3 instead of using two MXGs. For the interference waveform on the N+2 and N+4 channels, the center frequency of the waveform should be on the N+3 channel, while the frequency offset for each of the carriers are +8 MHz and -8 MHz, respectively.

Measurement procedure

1. Set the power of the interference signals on MXGs to the maximum allowable levels (for example, -25 dBm) defined in section 7.2, in MBRAI 2.0 Part 2[3]. Set the center frequency of all MXGs according to the specifications to make sure the interference signals are on the required channels.
2. Configure the PXB and N7623B QFP/QFP to generate and load the wanted and interference signals as defined in sections 10.9 and 10.10, MBRAI 2.0 Part 1[2].
3. Decrease the power of the wanted DVB-T/H signals and observe the quality of the video on the receiver. Once the degradation criteria is met, record the difference between the interference signal and the wanted signal. If the difference is higher than the value defined in the specifications[3], it means the receiver passes this test.
4. Repeat the test to cover all the modes and interference patterns defined in the specifications[3].
Guard interval utilization

The guard interval utilization test is conducted to measure the performance of the DVB-T/H receiver in the presence of echoes. The test system is shown in Figure 1. Set the output of the MXG to make sure the power level of the DVB-T/H signal is -40 dBm (at the receiver point) and the frequency is 666 MHz.

The following section first introduces the settings in the PXB, and then describes the measurement procedure.

PXB settings

1. Configure the PXB as shown in Figure 18. Here, two DSP blocks are used, one to generate the baseband signal, and the other to simulate multi-path fading.
2. Set up the parameters for real-time DVB-T/H signals and load the payloads as shown in the example in Figure 19.
3. Set up the echoes as defined in the specifications under Fader 1 Paths as shown on the screen in Figure 20, below. Take the DVB-T/H signal with the 8K mode and GI of 1/4 for example, while Tg is 224 μs and 0.9 x Tg = 201.6 μs.
4. Set up the C/N as shown in Figure 21. The signal-to-noise ratio corresponds to the C/N in the specifications.

Measurement procedure

Set up the echoes and C/N as defined in the specifications, and check whether the reception quality is better than the degradation criteria. If it is better, it means that the receiver passes the test. Repeat the measurement to cover all the cases defined in the specifications[3].
Tolerance to impulse interference

The tolerance to impulse interference test is conducted to measure the performance of the DVB-T/H receiver in the presence of impulsive noise. In this test, both wanted DVB-T/H signals and impulsive noise are needed.

The connection to the instrument is shown in Figure 2. A real-time DVB-T/H signal is generated in the PXB and up-converted to RF frequency by an MXG. Impulsive noise is generated in another MXG using the Agilent impulsive noise generator tool.

The following section first introduces the settings in the PXB and the impulsive noise generator, and then describes the measurement procedure.

PXB settings

Set up the PXB with N7623B Option EFP to generate the wanted real-time DVB-T/H signal as follows:

1. Configure the PXB as 1 channel.
2. Set up the basic DVB-T/H settings and load the payloads as shown in Figure 23.

Setting up the impulsive noise generation tool

To comply with the measurement requirements in the MBRAl, Agilent provides a software tool to generate the impulse noise interferences. Use the software together with a signal generator (ESG or MXG) with Option 403 (calibrated AWGN).

The software generates waveforms according to the test patterns, as defined in the specifications, to control the markers in the signal generator, route these markers to RF blanking, and at the same time turn on the real-time AWGN in ARB mode. By routing the markers to RF blanking, the signal generator blanks the RF output according to the markers. Then the output of the signal generator is the real-time impulse noise.
The six patterns defined in MBRAI are pre-defined in the impulsive noise generation tool. You can select them directly or set the pattern manually.

Figure 25 shows the generated impulsive noise, which is test pattern 6. It is viewed with an oscilloscope. The left graph represents a complete burst containing 40 pulses. The spacing between each pulse is random, between 0.5 ~ 1 μs. The right graph shows a larger view of the three pulses, circled in red. The signal in each pulse is real-time AWGN with the length of 250 ns. In the space between two pulses, the signal generator switches off the RF output, so the signal displayed is the noise floor of the oscilloscope.

Measurement procedure

1. Set the center frequency of both signal generators to 666 MHz, set the amplitude of the MXG for impulse noise generation to -35 dBm (at the receiver point) and the MXG for DVB-T/H signals to -30 dBm (at the receiver point).
2. Configure the PXB and the impulsive noise generator properly to generate the DVB-T/H and impulsive noise signal.
3. Decrease the amplitude of the signal generator for DVB-T/H until the degradation criteria is met. Record the power difference (I/C) between the impulse noise and DVB-T/H signal. If the power difference is higher than that defined in the specifications, it means the receiver passes the test.
4. Repeat the measurement to cover all the test cases defined in the specifications\(^3\).

Figure 25. A view of the impulse noise
GSM900 TX signal blocking test

The GSM900 TX signal blocking test is conducted in order to verify that the sensitivity of DVB-H receiver does not degrade too heavily while the GSM900 TX blocking signal is present in the receiver input.

The test system is shown in Figure 2. The PXB is connected to one MXG to generate the wanted real time DVB-H signal. A different MXG is used to generate the GSM900 TX signal.

The DVB-H signal under test is: 8K OFDM, GI=1/4, QPSK, CR = 1/2, MPE-FEC CR = 3/4. Note that the MPE-FEC CR is set in the DVB-H video stream loaded in the PXB.

Setting up the MXG to generate a GSM900 TX signal

The GSM900 TX signal is simulated with a 1 KHz CW signal, which is FM modulated with ±50 kHz deviation. The frequency of the signal is 880 MHz. The MXG is set to transmit this signal as shown in Figure 26. The output power is 20 dBm, assuming the attenuation of the cable and connections between the MXG and the DVB-H receiver is 2 dB.

Setting up the PXB to generate the DVB-H signal

1. Configure the PXB as shown in Figure 27. Note that you need to choose Real Time as the Waveform Type and DVB-T/H as the Waveform Format under User File to generate real-time DVB-T/H signals.

2. Configure the basic DVB-T/H settings and load the payloads as shown in Figure 28.

3. Decrease the power of the DVB-T/H signal through the PXB or on the MXG directly. If the degradation criteria is reached, record the current value of the DVB-T/H signal. This value should be lower than or equal to the ones defined in the specifications[3].

![Figure 26. MXG settings](image)

![Figure 27. Configure the PXB as 1 channel](image)

![Figure 28. Basic DVB-H settings](image)
Mobile SFN channel test

The mobile SFN channel test is conducted in order to verify that the DVB-H receiver can work properly in the mobile SFN environment. The test system for the mobile SFN channel test is shown in Figure 1.

The DVB-H signal under test is: 8K OFDM, GI = 1/4, CR = 1/2, MPE-FEC CR = 3/4. The measurement frequency is channel 45 (666 MHz).

The following section first introduces the settings in the PXB, and then describes the measurement procedure.

PXB settings

1. Configure the PXB as shown in Figure 29. Here, two DSP blocks are used, one to generate the baseband signal, and one to simulate echoes.
2. Configure the basic DVB-H settings and load the payloads.
3. Set the channel profiles as defined in the specifications in the Fader1 Paths screen shown, in Figure 31. Take weak long echo for example.
4. Configure the C/N as shown in Figure 32.

Measurement procedure

1. Set the Doppler frequency to 10 Hz as shown in Figure 31, then decrease the C/N by changing the signal-to-noise ratio value in Figure 32 until the degradation criteria is reached. Record this C/N as “C/N min”.
2. Set the C/N to (specified C/N min + 3 dB), increase the Doppler frequency until the degradation criteria is reached. Record this Doppler frequency as “F_{dB}”. Note that C/N min and F_{dB} should meet the requirements in the specifications.
3. Repeat the measurement to cover all the cases defined in the specifications.
Conclusions

It is important for the DVB-T/H set-top-boxes or mobile phones with integrated DVB-T/H receivers to pass the conformance test in order to be used commercially. Agilent provides an efficient test system based on the PXB and MXG general purpose platforms, together with N7623B Signal Studio for digital video. This system enables successful receiver performance testing as defined in EICTA MBRAI 2.0.

Reference

[1] ETSI EN 300 744, “Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television”.

Related Literature

BER and Subjective Evaluation for DVB-T/H Receiver Test Application Note
Compliant digital video receiver and component test.
Test cases are given for DVB-T/H receivers.

Signal Studio Software Brochure

For more information, please visit:

www.agilent.com/find/digital_video
www.agilent.com/find/PXB
www.agilent.com/find/N7623B
www.agilent.com/find/MXG
Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:
www.agilent.com/find/removealldoubt

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

America
Canada (877) 894 4414
Latin America 305 269 7500
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 43 (0) 1 360 277 1571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries: www.agilent.com/find/contactus
Revised: October 1, 2009
Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010
Printed in USA, April 30, 2010
5990-5722EN

Agilent Email Updates
www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

LXI
www.lxistandard.org
LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.