Key Features

- Perform measurements on signals from the latest WLAN standards such as IEEE 802.11ac
- Demodulate all standard-specified modulation formats (up to 256QAM) and bandwidths (up to 160 MHz)
- Analyze up to 8x8 MIMO 802.11ac signals and up to 4x4 MIMO 802.11n signals
- View important signal details with unlimited trace displays and markers
- Verify and troubleshoot PHY layer performance and errors down to the bit level
WLAN Modulation Analysis

Gain greater insight into wireless LAN signals with the 89600 VSA software for 802.11a/b/g/n/ac modulation analysis. Option B7R provides spectrum, time and modulation quality measurements for WLAN 802.11a/b/g signals.

Options B7Z and BHJ expand upon the WLAN modulation analysis provided by Option B7R to include 802.11n (Option B7Z) and 802.11ac (Option BHJ). Option B7Z adds an advanced troubleshooting and evaluation toolset specifically designed to handle the challenge of analyzing an IEEE 802.11n MIMO signal. Option BHJ adds the capability to analyze and troubleshoot the latest 802.11ac signals.

802.11 WLAN standards are among over 75 signal standards and modulation types supported by the 89600 VSA software. The 89600 VSA software is a comprehensive set of tools for demodulation and vector signal analysis. These tools enable you to explore virtually every facet of a signal and optimize your most advanced designs. As you assess the tradeoffs, the 89600 VSA software helps you see through the complexity.

Technology overview

The IEEE 802.11 WLAN standard includes several extensions: the IEEE-802.11a/g and the older HiperLAN2 standards, both of which use burst OFDM signals, with 20 MHz bandwidth.

The IEEE 802.11b/g standard defines a direct sequence spread spectrum (DSSS) signal, with complementary code keying (CCK) modulation, plus an optional packet binary convolution code (PBCC) mode, and an optional shorter preamble.

The 802.11g standard modifies the 802.11b standard, adding the ability to use 802.11a OFDM-formatted signals and an optional 802.11b-compatible DSSS-OFDM mode, plus other modifications.

The IEEE 802.11n standard includes up to 4x4 multiple input, multiple output (MIMO) and 40 MHz channel bandwidth for higher data throughput. High-throughput (Greenfield) mode, non-HT (legacy) mode, and HT mixed mode are three operating modes of 802.11n.

The latest WLAN technology, 802.11ac, achieves very high throughput (VHT) of 1Gb/s with wider channel bandwidths (up to 160 MHz), higher density modulation format (up to 256QAM) and higher order MIMO (up to 8x8).
Analysis and Troubleshooting

Analyze a wide range of WLAN formats

Option B7R analyzes IEEE 802.11a/g/j/p/, HiperLAN2 OFDM formats, as well as IEEE 802.11b DSSS/CCK/PBCC formats. Optional PBCC modes, short preamble, and CCK preamble of the CCK-OFDM format in IEEE 802.11g are also supported.

Use Option B7Z with the appropriate 2- or 4-channel front end to measure 802.11n MIMO signals with HT-greenfield, HT-mixed, HT-duplicate, and non HT-duplicate 20 and 40 MHz systems.

Option BHJ, which requires Option B7Z, provides 802.11ac modulation analysis. Option BHJ enables you to view and troubleshoot the entire breadth of the 802.11ac modes, providing greater insight and confidence in validating chipsets and devices regardless of the 802.11ac format implemented.

- Support of all signal bandwidths, including 20, 40, 80 and 160 MHz. The 160 MHz bandwidth is supported in both contiguous and non-contiguous modes
- Support of all 802.11ac modulation formats, from BPSK up to 256QAM
- Support for up to 8x8 MIMO
- Support for multi-user MIMO

Use Dynamic Help to access the Help text on the Demod Properties Format tab and learn about WLAN formats and presets available for Option B7R, Option B7Z or Option BHJ. Detach the Dynamic Help window and move it to the side for easier viewing as it follows your menu choices. Lock it to stay on important Help data topics.

Troubleshoot and analyze 802.11ac signals with 160 MHz bandwidth and 256QAM.
Easy set-up with complete parameter control

Quickly set up measurements with standard presets, while maintaining the ability to adjust a wide range of signal parameters for troubleshooting. For example, with OFDM systems, you can modify sub-carrier spacing, symbol timing offset, synchronization reference, pilot tracking, equalizer training sequence and more. For IEEE 802.11b/g signals, you can adjust the clock timing and track phase, and you can select the descramble mode. Automatically detect, despread, descramble and demodulate payload data for IEEE 802.11b/g WLAN-DSSS/CCK/PBCC formats.

For 802.11n/ac, in addition to standard presets and automatic detection, Option B7Z and Option BHJ provide key parameter detection from SIG symbols for fast and easy demodulation.

Each option lets you adjust many format-specific parameters using the Advanced tab, providing greater insight into your signal under different conditions, and uncovering anomalies you won’t see any other way.

Here the Advanced tab was used to select a single carrier. The constellation, EVM and symbols/error table all show results for only the chosen carrier.
Evaluate modulation quality down to the bit level

Make EVM measurements at the level needed: overall burst, per symbol, or per each subcarrier in a symbol. Examine the symbols and error table for information on average EVM, peak EVM, demodulated bits, detected header information and more.

For MIMO systems, Option B7Z and Option BHJ provide detected stream bits, a MIMO channel matrix, data burst information, multiple data streams, cross channel results, plus NxN channel matrix values. Automatically determine spatial mapping matrix, subcarrier modulation format, burst length and more.

Options B7Z and BHJ provide in-depth, bit-level analysis for 802.11n/ac MIMO signals with error summary tables, detected burst info and decoded SIG info.

View key 802.11ac MIMO parameters such as multiple constellations, error summary and multi-user info for up to 8 transmit streams simultaneously.
Powerful error measurements let you look at signal performance in detail

Error vector spectrum, error vector time, channel frequency response, correction, common pilot error per symbol, and more, are available for WLAN formats. Compound constellation displays let you determine and display all modulation formats in the burst.

For MIMO systems, Option B7Z and Option BHJ add channel, stream, and cross channel data, providing the most complete and robust signal and error characterization in the industry.

Phase noise, often the dominant cause of EVM in OFDM systems, can be characterized within the 802.11n/ac demodulation measurement directly using the phase noise spectrum trace.

The 89600 VSA software lets you view an unlimited number of simultaneous traces, showing results such as EVM vs. frequency or time, IQ errors, equalizer channel frequency response, common pilot error, phase noise spectrum and more.
Troubleshoot with insightful tools

Powerful display modes include cumulative history, spectrogram, and digital persistence. Use signal capture to capture and record transient events, or share the signal for collaborative analysis with remote colleagues. Additional tools, like overlap processing, let you effectively “slow down” the apparent measurement for more in-depth analysis.

All 3 displays show the spectrum of this WLAN signal recorded using signal capture. Digital persistence (lower left) highlights the signal’s amplitude behavior over a short time period. The spectrogram (right) provides information on frequency behavior over time. The cumulative history (upper left) provides statistical analysis details on the signal’s amplitude and frequency behavior over very long times.
Software Features

<table>
<thead>
<tr>
<th>Technology</th>
<th>Option B7R</th>
<th>Option B7Z</th>
<th>Option BHJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported standards</td>
<td>IEEE 802.11-2012</td>
<td>IEEE 802.11-2012</td>
<td>IEEE 802.11-2012</td>
</tr>
<tr>
<td>Operating modes supported</td>
<td>IEEE 802.11b long or short preamble/PBCC IEEE 802.11g PBCC22/ PBCC33</td>
<td>HT-greenfield HT-mixed Non-HT duplicate HT duplicate</td>
<td>VHT</td>
</tr>
<tr>
<td>MIMO supported</td>
<td>Up to 4 spatial streams</td>
<td></td>
<td>Up to 8 spatial streams Up to 4 users</td>
</tr>
<tr>
<td>Preset to standard</td>
<td>IEEE 802.11a/g OFDM HiperLAN2 IEEE 802.11g DSSS-OFDM IEEE 802.11a/g turbo mode IEEE 802.11p DSRC IEEE 802.11j 10 MHz</td>
<td>DSSS CCK PBCC</td>
<td>802.11n 20 MHz 802.11n 40 MHz</td>
</tr>
<tr>
<td>Data modulation format</td>
<td>BPSK QPSK 16QAM 64QAM</td>
<td>Barker1/Barker2 CCK5.5/CCK11 PBCC5.5/PBCC11/PBCC22/ PBCC33</td>
<td>BPSK QPSK 16QAM 64QAM</td>
</tr>
</tbody>
</table>

Measurement Results

<table>
<thead>
<tr>
<th>Time</th>
<th>Spectrum</th>
<th>Search time</th>
<th>CCDF</th>
<th>CDF</th>
<th>Equalizer impulse response</th>
<th>Channel frequency response</th>
<th>CPE (common pilot error)</th>
<th>Correction</th>
<th>Error vector spectrum</th>
<th>Error vector time</th>
<th>IQ measured</th>
<th>IQ reference</th>
<th>Marker data</th>
<th>PDF</th>
<th>Preamble error</th>
<th>Preamble frequency error</th>
<th>Phase noise spectrum</th>
<th>OFDM eq MIMO condition number</th>
<th>MIMO channel matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

8
Table Results

IEEE 802.11a/g/j/p OFDM

<table>
<thead>
<tr>
<th>Symbols/Errors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol data bits, EVM, pilot EVM, CPE (common pilot error), IQ (origin) offset, frequency error, symbol clock error, sync correlation, number of symbols, modulation format, code rate, bit rate, IQ gain imbalance, IQ quadrature skew</td>
<td></td>
</tr>
</tbody>
</table>

IEEE 802.11b/g DSSS/CCK/PBCC

<table>
<thead>
<tr>
<th>Symbols/Errors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol data bits, IEEE 802.11b 1,000-chip peak EVM, EVM, magnitude error, phase error, IQ offset, frequency error, sync correlation, burst type, bit rate, number of data octets, data length</td>
<td></td>
</tr>
</tbody>
</table>

IEEE 802.11n, IEEE 802.11ac

<table>
<thead>
<tr>
<th>Symbols/Errors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol data bits, stream EVM, stream peak EVM, stream pilot EVM, CPE, stream data EVM</td>
<td></td>
</tr>
<tr>
<td>OFDM error summary</td>
<td>EVM, EVM peak, pilot EVM, data EVM, frequency error, symbol clock error, CPE, IQ offset, IQ quadrature error, IQ gain imbalance, IQ time skew, cross power, sync correlation results per channel and averaged</td>
</tr>
<tr>
<td>OFDM data burst info</td>
<td>Detected symbols for active burst (L-STF, L-LTF, L-SIG, L-Data, HT-STF, HT-LTF, HT-SIG, HT-Data, VHT-SIG-A1, VHT-SIG-A2, VHT-SIG, VHT-STF, VHT-LTF, VHT-SIG-B, VHT-Data) with modulation format, length, power and EVM; total burst length, power, EVM, format, number of streams, VHT-SIG-A and HT-SIG CRC pass/fail and L-SIG status</td>
</tr>
<tr>
<td>OFDM SIG info</td>
<td>Decoded fields of the L-SIG, HT-SIG, and/or VHT-SIG symbols present in the burst, as described in the 802.11a/n/ac standards</td>
</tr>
<tr>
<td>OFDM multi-user info</td>
<td>EVM, MCS, format, number of streams, length, power for all detected users in the burst</td>
</tr>
</tbody>
</table>
This technical overview provides nominal performance specifications for the software when making measurements with the specified platform. Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

For a complete list of specifications, refer to the measurement platform literature.

Key Specifications

<table>
<thead>
<tr>
<th>X-Series signal analyzers</th>
<th>PXA</th>
<th>MXA</th>
<th>EXA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11a/b/g/n/ac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF input level = –10 dBm, input range 1 step below overload, RMS averaging set to average count = 20, input phase noise optimization = best wide offset, single channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual EVM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equalizer training: Channel estimation sequence only/channel estimation sequence + data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 GHz center frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 MHz signal</td>
<td>–53.0 dB/–55.8 dB</td>
<td>–51.3 dB/–54.1 dB</td>
<td>–49.0 dB/–51.8 dB</td>
</tr>
<tr>
<td>40 MHz signal</td>
<td>–50.0 dB/–52.8 dB</td>
<td>–48.4 dB/–51.2 dB</td>
<td>–46.5 dB/–49.3 dB</td>
</tr>
<tr>
<td>5.8 GHz center frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 MHz signal</td>
<td>–50.7 dB/–53.5 dB</td>
<td>–49.3 dB/–52.1 dB</td>
<td>–47.0 dB/–49.8 dB</td>
</tr>
<tr>
<td>40 MHz signal</td>
<td>–48.0 dB/–50.8 dB</td>
<td>–47.5 dB/–50.3 dB</td>
<td>–45.5 dB/–48.3 dB</td>
</tr>
<tr>
<td>80 MHz signal</td>
<td>–48.0 dB/–50.8 dB</td>
<td>–47.5 dB/–50.3 dB</td>
<td>–45.5 dB/–48.3 dB</td>
</tr>
<tr>
<td>160 MHz signal</td>
<td>–47.0 dB/–49.8 dB</td>
<td>–47.0 dB/–49.8 dB</td>
<td>–47.0 dB/–49.8 dB</td>
</tr>
<tr>
<td>Frequency lock range</td>
<td>± 624 kHz = ± 2 × sub-carrier spacing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency accuracy</td>
<td>± 10 Hz + tfa (tfa = transmitter frequency × frequency reference accuracy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum capture length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 MHz span</td>
<td>20.93 sec</td>
<td>20.93 sec</td>
<td></td>
</tr>
<tr>
<td>40 MHz span</td>
<td>10.46 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 MHz span</td>
<td>5.23 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 MHz span</td>
<td>2.61 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.11b/g DSSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>Total power within 2 dB of full scale, 10 averages, reference filter = transmit filter = Gaussian with BT = 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual EVM</td>
<td>Equalizer off/on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0%/0.5%</td>
<td>1.5%/0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency lock range</td>
<td>± 2.5 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency accuracy</td>
<td>± 8 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum capture length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.375 MHz span</td>
<td>6.1 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 MHz span</td>
<td>44 ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. With Option MPB, DP2 or B40.
2. Option B25 only, not DP2, MPB, or B40.
80000, 90000 Series Infiniium oscilloscopes

IEEE 802.11n/ac

<table>
<thead>
<tr>
<th>Performance</th>
<th>Up to 4 channels, input range within 2 dB of full scale on all input channels, RMS averaging with average count = 20, at least 16 data symbols analyzed in each burst, analyzer span set to default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual EVM</td>
<td>Equalizer training: Channel estimation sequence only/channel estimation sequence + data</td>
</tr>
<tr>
<td>2.4 GHz center frequency</td>
<td>User rate mode = 10 GHz</td>
</tr>
<tr>
<td>20 MHz signal</td>
<td>−41 dB/−43 dB</td>
</tr>
<tr>
<td>40 MHz signal</td>
<td>−40 dB/−42 dB</td>
</tr>
<tr>
<td>5.8 GHz center frequency</td>
<td>User rate mode = 20 GHz</td>
</tr>
<tr>
<td>20 MHz signal</td>
<td>−38 dB/−41 dB</td>
</tr>
<tr>
<td>40 MHz signal</td>
<td>−37 dB/−40 dB</td>
</tr>
<tr>
<td>Frequency lock range</td>
<td>± 2 x Subcarrier Spacing = ± 625 kHz at default subcarrier spacing</td>
</tr>
<tr>
<td>Frequency accuracy</td>
<td>± 1 kHz</td>
</tr>
<tr>
<td>Maximum capture length</td>
<td>Model, memory option and sampling mode dependent</td>
</tr>
</tbody>
</table>

Keep your 89600 VSA software up-to-date

With rapidly evolving standards and continuous advancements in signal analysis, the 89601BU/BNU software update and subscription service offers you the advantage of immediate access to the latest features and enhancements available for the 89600 VSA software. www.agilent.com/find/89600VSA

You can upgrade!

All 89600 VSA options can be added after your initial purchase and are license-key enabled. For more information please refer to www.agilent.com/find/89600_upgrades
Additional Resources

Literature

89600 VSA Software, Brochure, literature number 5990-6553EN
89600 VSA Software, Configuration Guide, literature number 5990-6386EN
89600 VSA software Opt 200 Basic VSA and Opt 300 Hardware Connectivity, Technical Overview, literature number 5990-6405EN
Agilent 89600 VSA Software Option B7Z: IEEE 802.11n MIMO Modulation Analysis, Demo Guide, literature number 5989-7267EN
Equalization Techniques and OFDM Troubleshooting for Wireless LANs (AN 1455), Application Note, literature number 5988-9440EN
RF Testing of Wireless LAN Products (AN 1380-1), Application Note, literature number 5988-3762EN
IEEE 802.11 Wireless LAN PHY Layer (RF) Operation and Measurement (AN 1380-2), Application Note, literature number 5988-5411EN
Making 802.11G Transmitter Measurements (AN 1380-4), Application Note, literature number 5988-7813EN

Web

www.agilent.com/find/89600VSA
www.agilent.com/find/WLAN
www.agilent.com/find/MIMO

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
*0.125 €/minute
Germany 49 (0) 7031 464 633
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries:
www.agilent.com/find/contactus

www.agilent.com/find/WLAN

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

7 Three-Year Warranty

www.agilent.com/find/ThreeYearWarranty
Agilent’s combination of product reliability and three-year warranty coverage is another way we help you achieve your business goals: increased confidence in uptime, reduced cost of ownership and greater convenience.

Agilent Advantage Services
www.agilent.com/find/AdvantageServices
Accurate measurements throughout the life of your instruments.

myAgilent
www.agilent.com/find/myagilent
A personalized view into the information most relevant to you.

www.lxistandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700* 0.125 €/minute
Germany 49 (0) 7031 464 633
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries:
www.agilent.com/find/contactus (BP-3-1-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013
Published in USA, June 21, 2013
5990-6389EN