

Surviving State Disruptions Caused by Test:
the “Lobotomy Problem”

By
Kenneth P. Parker

Agilent Technologies
Loveland, Colorado

kenneth_parker@agilent dot com

Copyright © [2010] IEEE. Reprinted from IEEE
Paper 19.2
First presented at ITC Week, International Test Conference, October 31-November 5, 2010

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Agilent’s products or services.
Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE by writing to:
pubs-permissions at ieee dot org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Paper 19.2 International Test Conference 1
978-1-4244-7207-9/10/$26.00 ©2010 IEEE

Surviving State Disruptions Caused by Test:
the “Lobotomy Problem”

Kenneth P. Parker

Agilent Technologies
Loveland, Colorado

kenneth_parker at agilent dot com
Abstract

The practice of initializing a board or system for
testing purposes is not an exact science, but rather,
pursued empirically and with little help from IC
designers. This paper examines some of the issues and
trends that justify adding features to IEEE 1149.1 that
will facilitate safe, fast and effective initialization of a
board or system, to get it ready for testing and to leave
it in a safe state upon completion of testing.

1 Disclaimer
There is a new working group for IEEE 1149.1 that

is contemplating a revision to the standard which could
implement some of the ideas presented in this paper (see
[IEEEWG]). I am a member of that group, but the content
of this paper may not reflect their final thinking and
results, if any. Opinions stated throughout this paper are
my own.

2 Introduction
Imagine for a minute that you are a printed circuit

board. You have 240 silicon devices, and over 1,000
analog devices ranging from DC-to-DC converter
circuits, to termination resistors, to high-frequency
bypass capacitors. Some of your ICs are wildly complex
systems in their own right. Other components consist of
empty connectors that would connect some of your
nodes to other subsystems such as PCIe I/O cards or
extra memory. You are the flower of high technology,
hot out of the reflow oven and ready to go – but where?
To the test area, of course!

You are placed on an In-Circuit Test fixture and
find yourself pressed down on a “bed of nails”. (Ouch!!)
But now, you feel the life-giving flow of current in your
circuits as your power nodes are connected to voltage
sources. Here comes the 40 volt supply, and this lights
up your DC-to-DC converters, but, not all at once. First
the 5 volt section turns on, and it gradually stabilizes.
Then, after a few hundred milliseconds, on comes the 3.3
volt supply. Pretty soon, your ICs begin to wake up.
They have been carefully choreographed to turn on in a
certain order, following a power-up sequence determined
by your design team. Your main processor begins to

fetch instructions from the base address of your boot
ROM. It sends commands to other neighboring ICs to get
them going on their appointed tasks. The DC-to-DC
converters adjust to changing current loads. Things are
really getting interesting now. Heat is beginning to build
up in some of your devices as they begin to hum along
nicely. Life is good and getting better.

Suddenly, with absolutely no warning at all, 98 of
your ICs seem to go berserk. They have stopped
interacting in a rational way. They seem to be completely
mindless of their mission. They ignore commands and,
worse, they stop sending meaningful responses back.
They ignore the master clock. They seem to be doing
something, but are very slow now. The DC-to-DC
converters are trying to respond and are having trouble
finding equilibrium. Their voltages are not as stable as
you’d like. What the heck has happened here?

Well, this situation continues for several seconds.
You notice that some activity is occurring on a small
number of nodes that are receiving foreign signals from
the bed of nails. This might be the cause of problem, but,
before you know it, they stop. The ICs are not doing
much at all now, just like they’ve lost their minds.
Several are in a tight loop sending messages but ignoring
the answers. Others are completely silent. But now
there’s a worrisome development – the main processor is
trying to execute code from a bogus address – who
knows what that code might do! And the signals it is now
sending to the DC-to-DC subsystem are complete
nonsense. Of course, the voltages are now changing
again and this is also a troubling event. Suddenly, the
main 40 volt supply goes to zero without any warning.
What a day this has been!

 * * * *
What this thought experiment has attempted to

motivate is what a board might experience when, after
being powered up, it is tested with 1149.1 (or 1149.6)
Boundary-Scan [IEEE01], [IEEE03]. This rather disrupt-
tive event interrupts the board’s normal activities by
switching a large number of IC I/O pins from “normal”
mode to “test” mode. This event is completely
unsynchronized with any current activity, so that the
internal logic of each IC may suddenly see completely
illogical states, clocks may be disconnected, the outputs

Paper 19.2 IEEE International Test Conference 2

suddenly enabled when they were tri-stated, et cetera.
What is the effect of this on the board? Well, for all the
nodes that are contained by Boundary-Scan device pins,
we know that they are participating in some form of
carefully crafted test. The other nodes are probably
responding to these signals, but it may not be clear how.
Further, when the Boundary-Scan tests complete, the
pins states are returned from test mode back to what the
1149.1 standard euphemistically calls “normal” mode
again. But few would expect that normalcy will ensue.
Indeed, it should be a great worry that undefined,
possibly harmful results could follow before you could
get the power turned off. It’s a bit like an empty car
careening down a road with a brick on its accelerator.

This situation was termed the “Lobotomy Problem”
in [Park03] (in 1992, first edition), as an anthropomorphic
allusion to surgical disconnection of the pre-frontal lobes
of the brain from the main cortex – a frontal lobotomy.
(This controversial medical procedure was developed in
the mid-1930s and was largely replaced with drug
therapies by the 1960s. Who can forget Jack Nicholson’s
portrayal of a lobotomized inmate in “One Flew Over the
Cuckoo’s Nest” in 1975?) We regularly lobotomize
millions of complex logic boards and systems every year
without asking if there might be a less randomly violent
way to treat these potentially delicate entities.

I have found no “smoking gun” where collateral
damage due to Boundary-Scan testing has been docu-
mented, but I think that is due both to luck and a lack of
root-cause analysis. The random nature of when loboto-
mization occurs in a board’s otherwise natural course of
events may well hide the occasional harmful effects as a
part of “normal” yield loss, i.e., we won’t find what we
don’t look for. And there is the possibility that damage
does not occur, but lifetime degradation is a result.

The rest of this paper will discuss technology trends
that will make this problem of increasing concern, and
examine a potential solution toolset proposed as an
addition to the 1149.1 standard.

3 Technology Trends
There have been perhaps 12 to 14 cycles of

Moore’s Law in the last 20 years, which is the time since
the IEEE 1149.1 standard came into being. Back then the
ascendant large devices were typified by the 68040 or the
80486. Not surprisingly, there have been some modest
technological changes since then. Some of these are:

• Programmability – devices can be configured for
functionality after they are manufactured and
within their application, including the voltage
levels they produce and accept on their I/O pins.

• Clocking – devices once accepted a direct clock
signal; now they take that clock signal and
multiply it up with a phase-lock loop (PLL) to a

much higher rate inside the IC. Indeed there are
often multiple independent clocking domains
within an IC.

• Power – devices consume much more power with
more transistors leaking more current. It is quite
common for devices to have several supply
voltages. Devices get hotter, faster. The necessary
heat sinks can be massive, bolt-on assemblies that
are incompatible with test fixtures.

• Power management – devices are designed for
power and thermal efficiency. Thus they can “turn
off” subsystems which are idle or at thermal risk.

• I/O interfaces – these are vastly more complex,
with serial protocols, embedded clocking, very
high data rates and analog “tuning” for ultimate
performance.

• Complex bootup sequences – these incredibly
complex devices have a lot of work to do just
“waking up”.

Boards that use these ICs have also evolved. They

are (of course) far more complex. Since the devices on
these boards use several lower voltages but much higher
currents, it has become common for a board to regulate
several lower voltages from one much higher voltage by
use of on-board DC-to-DC converters, often imple-
mented with discrete analog components.

It is quite common for the act of applying power to
a board to be a complex, sequential series of actions
taking hundreds of milliseconds or more. Disturbances in
the regulation process can produce “exothermic events”
very quickly, sometimes with spectacular (also expen-
sive) effect.

The heat generated in these devices is also prob-
lematic, so exotic cooling mechanisms are more common
these days. That said, these cooling structures are often
not in place during board testing for practical reasons.
This can place restrictions on how long boards are
powered during testing.

Circuit access used by bed-of-nail testers is (as
usual) more difficult to achieve, placing more limits on
what can be tested without the assistance of Boundary-
Scan-based tests. Thus, we see increasing numbers of
ICs on boards that contain 1149.x technologies. This
same lack of access means we cannot detect as many
potential shorts on boards while the power is still off.
Testing for shorts with the power on is more risky, but
also inevitable.

Today’s board test or system test engineer is
finding increasing challenges in guaranteeing the safety
of boards (and fixtures and operating personnel) due to
many of these trends. At the same time they are under
increasing pressure to decrease test costs as well. It can
be very difficult to figure out solutions, especially when

Paper 19.2 IEEE International Test Conference 3

a board’s design team has not given the test engineer
some “hooks” to use in solving these problems.

4 Current 1149.1 Modal States
The IEEE 1149.1 standard views silicon devices as

having two basic operations, here called “modal states”.
The first is “non-test modal state” (also referred to as
“mission mode” in the literature) and the second is “test
modal state”. A device will toggle between these two
modal states when a “test mode instruction” such as
EXTEST is loaded versus a “non-test mode instruction”
such as BYPASS is loaded. See the diagram in Figure 1.

Figure 1: The basic modal state model for 1149.1.
This model also shows (in dashed lines) that there

is another state of being powered off and that you
progress from the power off state to the normal operation
mode via some sort of power up or “boot” process. In
some devices this is just by asserting the TRST* pin if it
exists. In others, it is accomplished as a natural result of
powering up the device as required by rule 6.2.1a) of the
standard [IEEE01]. There is also a synchronizing
sequence (5 TCKs with TMS held high) that can take the
device to the Test-Logic-Reset state, but this is not
required as a part of power up. Note the synchronizing
sequence has the effect of jam-loading a non-test
instruction, so it takes a device from test operation to
non-test in such case.

The “Master Reset” transition (think “reboot”) is
accessible in the non-test modal state, but in the test
modal state, that signal is ignored and does not disturb
testing activities.

The transitions in question here are those from
“non-test modal state” to “test modal state”, and vice
versa. Both are triggered by loading instructions and so
occur on the falling edge of TCK in the Update-IR TAP
controller state, which is not synchronized to particular
system activities. For example, a processor may be about
to receive an instruction it is fetching from memory, but

just as this instruction opcode arrives, the processor
switches to EXTEST (assume the Boundary register cells
are control-and-observe cells) so the opcode is blocked.
How does the processor react internally? Also, the
processor outputs are suddenly disconnected from their
surrounding devices. What happens to them? This is the
genesis of the lobotomy problem. Once the system is so
violently disturbed, it is quite difficult to even imagine
what the result could be, but it is easy to imagine the
worst.

Similarly, what happens when testing is complete
and “non-test modal state” is re-entered? Again, we can
only imagine (and cringe). Notice too that whenever the
TAP enters the Test-Logic-Reset (TLR) state, this also
forces the same transition. Since many standalone
Boundary-Scan tests begin in the TLR state and end
there too, this virtually guarantees lobotomization.

5 The “Real” Modal State Model
The reality of 1149.1 modal state changes is

captured in Figure 2, where the lobotomized modal state
is a “trap” that prevents the system from getting back to
normal. The only path back to normal is by cycling
power or possibly by the Master Reset process (in red),
if that process is still workable in the lobotomized state.

Figure 2: Basic model including lobotimization.
Note that the modal state concept in Figure 2

describes individual ICs, or full systems containing at
least one 1149.1 IC.

The next section describes a way of dealing with
the lobotomy problem by the assignment of a new modal

Non-Test
Modal State

Test Modal
State

Load a test
mode instruction

Load a non-test
mode instruction

Power Off

Power Up
Process

Power
Down

Power
Down

Master
Reset

Master
Reset

Load a non-test
mode instruction

Load a test
mode instruction

Non-Test
Modal State

Test Modal
State

Load a test
mode instruction

Load a non-test
mode instruction

Power Off

Power Up
Process

Power
Down

Power
Down

Lobotomized
Modal State

Load a test
mode instruction

Power
Down

Master
Reset

Master
Reset

Master
Reset ??

Load a test
mode

instruction

Load a non-
test mode
instruction

Paper 19.2 IEEE International Test Conference 4

state. This modal state would be accessed via new 1149.1
instructions.

6 The “Ready-for-Test” Modal State
As IC technology has evolved, there are a lot of

internal features inside ICs that take some time to
become ready for normal operations to commence. For
example, internal phase-lock loops have to acquire a
frequency and lock onto it. Internal charge pumps may
have to create internal voltage references. High-speed
I/O paths may have to be “tuned” for optimal
performance. Selectable I/O pin voltages may need to be
programmed, and so forth. These internal “boot up”
processes may be application dependent, so the board-
level context will affect the end results. Once these ICs
are booted, they then may access system boot code and
begin higher level activities like loading operating
system code, accessing storage devices, etc.

In the middle of all of this, a manufacturing test
could suddenly start up, lobotomizing the system.
However, by adding a new concept of a modal state
dedicated to the test problem, it is possible to avoid some
of the nasty implications of undefined behaviors. This
modal state can be called “Ready-for-Test”, and it is
inserted between the non-test modal state and the test
modal states. See the diagram in Figure 3.

Upon powering up, a device will enter the non-test
modal state as always. There it will stay until power
down, or, a new “INITIALIZE” process is performed
via new 1149.1 instructions. (For now, please ignore the
red transitions in Figure 3.) The INITIALIZE process
will take a period of time and/or some number of TCK
and/or system clocks to produce a state that is compatible
for testing. Some of the things INITIALIZE might do
are:

• Shut down phase-lock loops, or switch them to a
benign internal reference oscillator, before
EXTEST disconnects the I/O.

• Put power-hungry subsystems that can be powered
down into low power modes. This is particularly
important when heat sinks or fans may be missing
on devices, which is common during board
manufacturing test.

• Put internal state machines and analog subsystems
into quiescent modes. This reduces power con-
sumption and noise generation.

• Disable internal busses to remove the opportunity
for bus contentions.

• Turn on 1149.x circuitry needed for testing. For
example, IC designers implementing IEEE 1149.6
[IEEE03] have complained that the test receiver
circuits are power hogs that they only want to turn
on when needed for testing.

• Configure I/O properties of the device’s pins so as

to be compatible for testing. For example, voltage
levels for drivers and receivers can be selected
and drive strengths and slew rates can be
optimized for the rather pedestrian needs of
Boundary-Scan testing.

Figure 3: Adding a new "ready-for-test" modal state.
This last example implies that some application

specific configuration data may need to be supplied and
indeed this is the case. Further, it is anticipated that more
complex devices will need INITIALIZE, but simpler
devices may not. Finally, it would be best if any devices
in a chain of devices that need INITIALIZE will be able
to execute such routines in parallel while the others
“stand by”. When the INITIALIZE process is complete,
then the device is “Read-for-Test”, meaning test mode
instructions like EXTEST will be effective and the
devices will be well-behaved during testing. It’s like
announcing to them: “We are going to start testing soon.
Do whatever you need to prepare.”

The INITIALIZE process is thus invasive to the
“normal” (non-test) operation of the device (and system).
The process systematically calms the system into a “safe
and cool” state where subsequent testing can commence
without fear of nasty side effects. However, it has the
important characteristic of being able to respond to a
“Master Reset” by returning the device back to the non-

Non-Test
Modal State

Test Modal
State

Load a test
mode

instruction

Load a non-test
mode instruction

(or TLR)

Power Off

Power Up
Process

Power
Down

Power
Down

Compromised
Test Modal

State

Load a test
mode

instruction

Power
Down

Master
Reset

Master
ResetMaster Reset

or private
“RESTORE”

Ready-for-Test
Modal State

Master
Reset

INITIALIZE

TLR
Load a non-test
mode instruction

Load a non-
test mode
instruction

TLR

Load a test
mode

instruction

Power
Down

Load a test mode instruction

Load a
non-test

mode
instruction

(or TLR)

Paper 19.2 IEEE International Test Conference 5

test modal state. It is also envisioned that an optional,
perhaps proprietary “RESTORE” instruction could be
available to invoke this same master reset process via the
TAP.

Another important property is that from the ready-
to-test modal state we can proceed back and forth to the
test modal state, and the conditions set up by
INITIALIZE remain in effect. Thus, a sequence of
Boundary-Scan tests that need this calm, ready-to-test
state can each start and end in the Test-Logic-Reset state
without need of executing the INITIALIZE process
between each. Since the time (and data) needed to
INITIALIZE all such devices on a board could be
significant, it is more efficient for the state created by
INITIALIZE to be persistent.

The transitions marked in red in Figure 3 show the
case where test mode is entered without benefit of the
INITIALIZE process. This takes the device (or system)
to test mode, but the necessary conditions to support
testing may not be in place. This is termed a “compro-
mised test modal state”. Testing this way may or may not
be successful, particularly if I/O setups needed for test
are not the default states of the I/O pins in devices that
utilize INITIALIZE. These red transitions should thus
be avoided.1

The next section describes some new, optional
1149.1 instructions that support some of these concepts.
Not all are currently supported (as will be noted) since
there is some continuing debate about which concepts
are practical or impractical to support.

7 New 1149.1 Initialization Instructions
The 1149.1 Working Group is studying the addition

of two new instructions to support a formal concept of
initialization for testing. Both are optional, so devices
supporting an initialize process will implement at least
one of them.

7.1 The INIT_SETUP instruction
This optional instruction is non-intrusive (like

PRELOAD or BYPASS) and is used to set up
application-dependent data needed to support 1149.1
testing. It targets an INIT_DATA data register which
will receive parameters needed to set up the environment
needed by test instructions.

The classic use for this instruction is to set up I/O
pin operating parameters. For example, many devices

1 Changes to BSDL are needed to support INITIALIZE. A
device that supports INITIALIZE would have a new BSDL
Component_Conformance statement that would not be recog-
nized by legacy software. Such software would not be able to
process the new BSDL and thus force the question of
upgrading it.

have programmable logic levels on their I/O pins,
allowing them to be used in multiple environments, such
as with 3.0 volt logic, or 1.5 volt logic. The drive voltage
levels and receiver thresholds on such a device will need
to be configured for the device’s environment. Thus
multiple instances of the same IC on a board may end up
with different configuration loads into their INIT_DATA
registers. The configuration data does not immediately
reprogram the I/O behavior (as this would be invasive to
IC functionality), but when a pin-permission instruction
like EXTEST (or INIT_RUN described next) is loaded,
putting the device into test mode, the I/Os respond to the
configuration data held in INIT_DATA at that time.

Other setup data may be needed as determined by
the device designer. Thus the INIT_DATA register may
be logically divided into fields that serve separate
purposes. The working group is developing new BSDL
(Boundary-Scan Description Language) constructs for
conveniently labeling and describing these fields. A test
engineer developing a test program for a board or system
will need to set up a “side file” of configuration data for
each IC that supports the initialization process. A user
interface that reads the device BSDL will be able to
present the options to a test engineer with meaningful
labels, so s/he can make the right choices for loading
INIT_DATA of a given device. These choices will be
determined by the device’s environment, and information
from the device’s data sheet, if needed.

7.2 The INIT_RUN instruction
This optional, intrusive instruction drives the

internal state machines needed to execute the initialize
process, which may use data previously provided by
INIT_SETUP. The INIT_RUN instruction is similar to
the 1149.1 CLAMP instruction in that it uses data in the
Boundary register to fix the output drivers at a
predetermined state for the duration of operation of
INIT_RUN. This means a preceding PRELOAD
sequence is needed to set up the Boundary register with
data to define these output states. Also, if the device has
programmable I/O states, these should be set up in
advance by INIT_SETUP. More detail about this is given
in section 8 below.

INIT_RUN differs from CLAMP in that it targets
an INIT_STATUS register between TDI and TDO
(rather than the Bypass register). INIT_RUN also has a
time specification for its duration, which may be some
number of TCK cycles, system clock cycles, or, elapsed
time. The INIT_RUN instruction may take an
appreciable time to execute, and while this is occurring,
the I/Os are clamped to a consistent state. The status
register will indicate a minimum of a “Done” bit and
possibly a “Success” bit too. (Success indication is a
matter of some debate among IC designers.)

The Done bit is expected to be set by the time the

Paper 19.2 IEEE International Test Conference 6

duration specification has been met, but it could be set
earlier if the device designer has options that can
complete earlier. Thus, polling could be performed to
end the initialize process earlier. The duration is a
“maximum” specification.

The Success bit (if provided) indicates that the
INIT_RUN process’s self-assessment is that it completed
its task successfully, or sensed some sort of internal
exception. In the event of a status failure, it may be
pointless to continue the test. Additional INIT_STATUS
bits can provide more information as to what is being
sensed, to aid in assessing what should be done with the
board.

7.3 A proprietary “RESTORE” instruction
A RESTORE instruction is not currently being

considered by the working group. This optional,
proprietary instruction provides a TAP-accessible means
of re-booting a device, and provides the same effect as
asserting a Master Reset signal. It is considered
proprietary based on the belief that the 1149.1 standard
should not provide a body of rules about how this is
implemented beyond providing a name and invocation
method for such a function. Because activating such an
instruction is a conscious act, it should work in either
non-test or test mode, whereas, triggering a Master Reset
signal can only work in non-test mode.

7.4 Persistent “Ready-for-Test” modality
The working group has considered the importance

of the “Ready-for-Test” modal state being persistent
even when the TAP travels into the Test Logic Reset
state. In section 6 it was argued that this could allow a
single invocation of INIT_SETUP/INIT_RUN to prepare
a Boundary-Scan-based board or system for a group of
independent Boundary-Scan tests that were successively
executed. However, IC designers have indicated this
could be difficult or expensive to achieve in some device
architectures. Thus, the Ready-for-Test modal state is
(currently) not envisioned to persist across a TLR
boundary. This means every independent Boundary-Scan
test must, as its preamble, perform INIT_SETUP/-
INIT_RUN before proceeding into test functionality.

The non-persistence of Ready-for-Test changes the
modal state diagram to that shown in Figure 4. Here we
see the “Lobotomized” modal state reappearing as a
destination from active testing. The initialize process can
restore the Ready-for-Test modal state from the
lobotomized state, or a Master Reset (or RESTORE) can
return to the non-test modal state. The TAP-based
RESTORE instruction can also “abort” a test and move
back to the non-test modal state, which is something a
Master Reset cannot do from the Test modal state.

A set of manufacturing tests for a board would

commence as follows:
1. Turn on power, board moves to Non-Test

modal state and boots up. The bootup process
may or may not complete before the test starts.

2. Use PRELOAD to set up first test events. (Stay
in Non-Test modal state.)

3. Perform the INITIALIZE process in all ICs
that support it (see detail in section 8). This
moves to the Ready-for-Test modal state.

4. Proceed into testing with EXTEST in all ICs;
now in Test modal state.

5. End test, TLR causes Lobotomized modal state
to be entered. Quickly proceed to step 6.

6. Subsequent tests progress from Lobotomized
modal state via step 2 above. Then power down
or cause a Master Reset (or RESTORE) to
bring back Non-Test modal state.

Figure 4: Modal states for non-persistence of Ready-
for-Test (note some power-down transitions omitted
for clarity).

If one of the series of test should fail, then there is a
question of whether to proceed with the following tests
or quit testing. Quitting may be the preferred action if a
test has discovered shorts on the board; shorts could
cause collateral damage. If quitting is the required action,
then powering down the board may be performed next.

8 INITIALIZE in Boundary-Scan Testing
Before examining the implications of initialization

on Boundary-Scan tests, it helps to map out a typical
Boundary-Scan test that would check for interconnect

Test Modal
State

Load a test
mode

instruction

Load a non-test
mode instruction

(or TLR)

Power Off

Power Up
Process

Power
Down

Compromised
Test Modal

State

Load a test
mode

instruction

Master
Reset

Master
Reset

Ready-for-Test
Modal State

Master
Reset

INITIALIZE

Load a non-
test mode
instruction

TLR

Load a test mode instruction

Lobotomized
Modal State

INITIALIZE

Load a non-test
mode instruction

(or TLR)

Load a non-
test mode
instruction

(or TLR)

Load a test
mode

instruction

TLR

Master Reset
or private

“RESTORE”

Load a test
mode

instruction

Master Reset
or private

“RESTORE”

Private
“RESTORE”

Non-Test
Modal State

Paper 19.2 IEEE International Test Conference 7

defects on a board with two garden-variety Boundary-
Scan ICs. The basic process is shown in Table 1 (at the
end of this paper). It shows 8 steps, the first 3 of which
are performed in Non-Test mode. These are used to set
up the first test vector behind the device drivers. At step
4, the EXTEST instruction becomes operational which
both lobotomizes the devices (and board) and causes the
first test pattern to propagate out of the Boundary-Scan-
controlled drivers across the board to Boundary-Scan
receivers. Steps 5 and 6 iterate this until all test patterns
have been propagated. Step 7 flushes out the captured
results of the last test pattern, while filling the Boundary
registers of all the devices with a benign “safe” pattern.
Finally, at step 8, the Test-Logic-Reset state is entered,
completing the formal Boundary-Scan test. This also
returns control of all Boundary-Scan drivers back to the
system logic, whatever it may be doing.

Now look at what the INITIALIZE process adds to
the test, as shown in Table 2 (at the end of this paper).
This example considers a chain of 4 devices. Device1
has no support for INITIALIZE at all. It could be a
legacy component, or, a simple device that needs no
initialization. The second device, Device2, implements
INIT_SETUP only. It may have some I/O pins that need
to have their voltage levels set accordingly so they can
communicate with surrounding circuitry. Device3 imple-
ments INIT_RUN only. It may have some internal power
domains that can be shut down to reduce heat dissipation
during testing. Finally, Device4 implements both
INIT_SETUP and INIT_RUN. It has I/O levels to set,
and other internal functions that need to be managed
before test begin. Both Device3 and Device4 produce a
“Done” bit in their status registers. (In this example, we
do not consider the import of a “Success” bit and what
the test would have to do if Done was set, but Success
was not set.)

Table 2 is an expansion of Table 1, with 5 new
steps inserted between steps 3 and 4 of the original test
(highlighted in yellow). Essentially, steps 1-3 establish
the first test pattern in the Boundary registers of the
devices, but before switching to EXTEST to begin the
test, the INITIALIZE process commences. Then step
Init1 loads either BYPASS or INIT_SETUP in the
devices. Both are non-test instructions so the devices
continue doing their functional operations. At step Init2
the two devices that support INIT_SETUP are then
loaded with setup data, while the other two continue with
BYPASS. If none of the devices in a chain support
INIT_SETUP, then steps Init1 and Init2 could be
skipped.

Next, at step Init3, all 4 devices switch control of
their drivers to the Boundary register, executing either
EXTEST, or INIT_RUN. This lobotomizes the devices
(and the board). Back at Step 3, the data needed for the
first test pattern was preloaded into the Boundary

registers. So at this point in time, that pattern is being
propagated across the board, but, there is more initialize
work to be done yet.

At step Init4, devices 3 and 4 are shifting out their
status registers. But, devices 1 and 2 are doing EXTEST,
so we must shift the same data from Step 3 back into
them so that their drivers will continue to hold the first
pattern data constant. This has the effect of making status
checking fairly data intensive, if the Boundary registers
in devices 1 and 2 are long. At Step Init5, the “Done”
bits shifted out are checked to see if INIT_RUN has
completed. If not we go back to Step Init4 and try again.

Once step Init5 finds both devices 3 and 4 are done
with INIT_RUN, our original test process commences at
Step 4, where all the devices are set up to run EXTEST.
The Boundary register data set up by Step 3 is still in
place, so the “standard” Boundary-Scan test proceeds as
before. The major difference is that the time between the
start of the first test pattern and the second test pattern is
lengthened by the time required to do the initialization.

9 Conclusion
The “Lobotomy Problem” has been described, with

motivation for why it should no longer be ignored. A
well-defined and controlled process for preparing for test
mode is proposed. Discussions with IC designers and test
engineers as well as board and system architects have
been solicited. Their input is reflected in a proposal for
1149.1-based support of an INITIALIZE process.

However, perceived silicon design difficulties have
precluded the creation of a persistent “Ready-for-Test”
modal state, resulting in Boundary-Scan tests that still
leave devices (and boards) in lobotomized states when
testing completes. Test engineers will still need to eval-
uate what this means and how they should deal with it.

10 Acknowledgement
I would like to thank the 1149.1 INITIALIZE Tiger

Team that has been studying the INIT question for a
number of months. In particular, Carol Pyron and Carl
Barnhart have provided leadership, guidance and exper-
tise in silicon design for testability.

11 References
[IEEE01] “IEEE Standard Test Access Port and Boundary-

Scan Architecture”, IEEE Std 1149.1-2001
[IEEE03] “IEEE Standard for Boundary-Scan Testing of

Advanced Digital Networks”, IEEE Std 1149.6-
2003

[IEEEWG] IEEE 1149.1 Working Group website which
contains meeting minutes and a private draft area:
http://grouper.ieee.org/groups/1149/1/

[Park03] “The Boundary-Scan Handbook”, 3rd Edition,
Parker, K. P., Kluwer Academic Publishers (now
Springer), Boston, MA, 2003

Paper 19.2 IEEE International Test Conference 8

Table 1: The 'Interconnect' test process.
Step Action Why Device 1 Device 2

1 TLR Initialize TAP. Garden variety Boundary-Scan
device. Garden variety Boundary-Scan device.

2 IRScan Get ready for
EXTEST. Load PRELOAD Load PRELOAD

3 DRScan Set up first BReg
pattern of test.

Shift test data into BReg, ignore
data out.

Shift test data into BReg, ignore data
out

4 IRScan Switch to test
mode.

Load EXTEST. This lobotomizes
the device at Update-IR.

Load EXTEST. This lobotomizes the
device at Update-IR.

5 DRScan Set up next test
pattern.

Shift test data into BReg, save result
data out.

Shift test data into BReg, save result
data out

6 Loop?
Multiple test
patterns. Return
to step 5.

7 DRScan Shift out last
pattern result.

Shift safe data into BReg, save data
out.

Shift safe data into BReg, save data
out.

8 TLR
End of test,
analyze result
data.

I/O reconnected, but device still
lobotomized.

I/O reconnected, but device still
lobotomized.

Table 2: Interconnect test with an INITIALIZE preamble for 3 of 4 devices.
Step Action Why Device 1 Device 2 Device 3 Device 4

1 TLR Initialize TAP.
Garden variety
Boundary-Scan
device.

Has INIT_SETUP
only.

Has INIT_RUN
only.

Has both
INIT_SETUP and
INIT_RUN.

2 IRScan Get ready for
EXTEST. Load PRELOAD. Load PRELOAD. Load PRELOAD. Load PRELOAD.

3 DRScan Set up first BReg
pattern of test.

Shift test data into
BReg, ignore data
out.

Shift test data into
BReg, ignore data
out

Shift test data into
BReg, ignore data
out

Shift test data into
BReg, ignore data
out

Init1 IRScan Get ready for setup
data Load BYPASS Load

INIT_SETUP Load BYPASS Load INIT_SETUP

Init2 DRScan Load setup data Shift Device2
setup data. Shift Device4 setup

data.

Init3 IRScan
Complete init
process

Load EXTEST,
controls outputs,
lobotimization.

Load EXTEST,
controls outputs,
lobotimization.

Load INIT_RUN,
outputs clamp,
lobotimization.

Load INIT_RUN,
outputs clamp,
lobotimization.

Init4 DRScan Read out status Load in same data
as step 3.

Load in same data
as step 3. Device3 status out Device4 status out

Init5 Loop? If not “Done” go to
step Init4. Check Device3

status.
Check Device4
status.

4 IRScan Set up chain for
test Load EXTEST. Load EXTEST. Load EXTEST. Load EXTEST.

5 DRScan Set up next test
pattern.

Shift test data into
BReg, save result
data out.

Shift test data into
BReg, save result
data out.

Shift test data into
BReg, save result
data out.

Shift test data into
BReg, save result
data out.

6 Loop?
Multiple test
patterns. Return to
step 5.

7 DRScan Shift out last
pattern result.

Shift safe data into
BReg, save data
out.

Shift safe data into
BReg, save data
out.

Shift safe data into
BReg, save data
out.

Shift safe data into
BReg, save data
out.

8 TLR End of test,
analyze result data.

I/O reconnected,
but still
lobotomized.

I/O reconnected,
but still
lobotomized.

I/O reconnected,
but still
lobotomized.

I/O reconnected,
but still
lobotomized.

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the

products and applications you select.

www.lxistandard.org
LAN eXtensions for Instruments puts

the power of Ethernet and the Web

inside your test systems. Agilent

is a founding member of the LXI

consortium.

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s

measurement expertise and product

breadth, combined with channel

partner convenience.

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent

office. The complete list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3500
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 9276201

For other unlisted Countries:
www.agilent.com/find/contactus
Revised: October 14, 2010

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2010
Printed in USA, December 10, 2010
5990-7044EN

www.agilent.com
www.agilent.com/find/boundaryscan

Agilent Advantage Services is com-

mitted to your success throughout

your equipment’s lifetime. We share

measurement and service expertise

to help you create the products that

change our world. To keep you com-

petitive, we continually invest in tools

and processes that speed up calibra-

tion and repair, reduce your cost of

ownership, and move us ahead of

your development curve.

www.agilent.com/quality

www.agilent.com/find/advantageservices

www.axiestandard.org
AdvancedTCA® Extensions for

Instrumentation and Test (AXIe) is

an open standard that extends the

AdvancedTCA® for general purpose

and semiconductor test. Agilent

is a founding member of the AXIe

consortium.

http://www.pxisa.org
PCI eXtensions for Instrumentation

(PXI) modular instrumentation

delivers a rugged, PC-based high-

performance measurement and

automation system.

TM

