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Abstract 

The practice of initializing a board or system for 
testing purposes is not an exact science, but rather, 
pursued empirically and with little help from IC 
designers. This paper examines some of the issues and 
trends that justify adding features to IEEE 1149.1 that 
will facilitate safe, fast and effective initialization of a 
board or system,  to get it ready for testing and to leave 
it in a safe state upon completion of testing. 

1 Disclaimer 
There is a new working group for IEEE 1149.1 that 

is contemplating a revision to the standard which could 
implement some of the ideas presented in this paper (see 
[IEEEWG]). I am a member of that group, but the content 
of this paper may not reflect their final thinking and 
results, if any. Opinions stated throughout this paper are 
my own. 

2 Introduction 
Imagine for a minute that you are a printed circuit 

board. You have 240 silicon devices, and over 1,000 
analog devices ranging from DC-to-DC converter 
circuits, to termination resistors, to high-frequency 
bypass capacitors. Some of your ICs are wildly complex 
systems in their own right. Other components consist of 
empty connectors that would connect some of your 
nodes to other subsystems such as PCIe I/O cards or 
extra memory. You are the flower of high technology, 
hot out of the reflow oven and ready to go – but where? 
To the test area, of course! 

You are placed on an In-Circuit Test fixture and 
find yourself pressed down on a “bed of nails”. (Ouch!!) 
But now, you feel the life-giving flow of current in your 
circuits as your power nodes are connected to voltage 
sources. Here comes the 40 volt supply, and this lights 
up your DC-to-DC converters, but, not all at once. First 
the 5 volt section turns on, and it gradually stabilizes. 
Then, after a few hundred milliseconds, on comes the 3.3 
volt supply. Pretty soon, your ICs begin to wake up. 
They have been carefully choreographed to turn on in a 
certain order, following a power-up sequence determined 
by your design team. Your main processor begins to 

fetch instructions from the base address of your boot 
ROM. It sends commands to other neighboring ICs to get 
them going on their appointed tasks. The DC-to-DC 
converters adjust to changing current loads. Things are 
really getting interesting now. Heat is beginning to build 
up in some of your devices as they begin to hum along 
nicely. Life is good and getting better. 

Suddenly, with absolutely no warning at all, 98 of 
your ICs seem to go berserk. They have stopped 
interacting in a rational way. They seem to be completely 
mindless of their mission. They ignore commands and, 
worse, they stop sending meaningful responses back. 
They ignore the master clock. They seem to be doing 
something, but are very slow now. The DC-to-DC 
converters are trying to respond and are having trouble 
finding equilibrium. Their voltages are not as stable as 
you’d like. What the heck has happened here? 

Well, this situation continues for several seconds. 
You notice that some activity is occurring on a small 
number of nodes that are receiving foreign signals from 
the bed of nails. This might be the cause of problem, but, 
before you know it, they stop. The ICs are not doing 
much at all now, just like they’ve lost their minds. 
Several are in a tight loop sending messages but ignoring 
the answers. Others are completely silent. But now 
there’s a worrisome development – the main processor is 
trying to execute code from a bogus address – who 
knows what that code might do! And the signals it is now 
sending to the DC-to-DC subsystem are complete 
nonsense. Of course, the voltages are now changing 
again and this is also a troubling event. Suddenly, the 
main 40 volt supply goes to zero without any warning. 
What a day this has been! 

                             *  *  *  * 
What this thought experiment has attempted to 

motivate is what a board might experience when, after 
being powered up, it is tested with 1149.1 (or 1149.6) 
Boundary-Scan [IEEE01], [IEEE03]. This rather disrupt-
tive event interrupts the board’s normal activities by 
switching a large number of IC I/O pins from “normal” 
mode to “test” mode. This event is completely 
unsynchronized with any current activity, so that the 
internal logic of each IC may suddenly see completely 
illogical states, clocks may be disconnected, the outputs 
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suddenly enabled when they were tri-stated, et cetera. 
What is the effect of this on the board? Well, for all the 
nodes that are contained by Boundary-Scan device pins, 
we know that they are participating in some form of 
carefully crafted test. The other nodes are probably 
responding to these signals, but it may not be clear how. 
Further, when the Boundary-Scan tests complete, the 
pins states are returned from test mode back to what the 
1149.1 standard euphemistically calls “normal” mode 
again. But few would expect that normalcy will ensue. 
Indeed, it should be a great worry that undefined, 
possibly harmful results could follow before you could 
get the power turned off. It’s a bit like an empty car 
careening down a road with a brick on its accelerator. 

This situation was termed the “Lobotomy Problem” 
in [Park03] (in 1992, first edition), as an anthropomorphic 
allusion to surgical disconnection of the pre-frontal lobes 
of the brain from the main cortex – a frontal lobotomy. 
(This controversial medical procedure was developed in 
the mid-1930s and was largely replaced with drug 
therapies by the 1960s. Who can forget Jack Nicholson’s 
portrayal of a lobotomized inmate in “One Flew Over the 
Cuckoo’s Nest” in 1975?) We regularly lobotomize 
millions of complex logic boards and systems every year 
without asking if there might be a less randomly violent 
way to treat these potentially delicate entities. 

I have found no “smoking gun” where collateral 
damage due to Boundary-Scan testing has been docu-
mented, but I think that is due both to luck and a lack of 
root-cause analysis. The random nature of when loboto-
mization occurs in a board’s otherwise natural course of 
events may well hide the occasional harmful effects as a 
part of “normal” yield loss, i.e., we won’t find what we 
don’t look for. And there is the possibility that damage 
does not occur, but lifetime degradation is a result. 

The rest of this paper will discuss technology trends 
that will make this problem of increasing concern, and 
examine a potential solution toolset proposed as an 
addition to the 1149.1 standard. 

3 Technology Trends 
There have been perhaps 12 to 14 cycles of 

Moore’s Law in the last 20 years, which is the time since 
the IEEE 1149.1 standard came into being. Back then the 
ascendant large devices were typified by the 68040 or the 
80486. Not surprisingly, there have been some modest 
technological changes since then. Some of these are: 

• Programmability – devices can be configured for 
functionality after they are manufactured and 
within their application, including the voltage 
levels they produce and accept on their I/O pins. 

• Clocking – devices once accepted a direct clock 
signal; now they take that clock signal and 
multiply it up with a phase-lock loop (PLL) to a 

much higher rate inside the IC. Indeed there are 
often multiple independent clocking domains 
within an IC. 

• Power – devices consume much more power with 
more transistors leaking more current. It is quite 
common for devices to have several supply 
voltages. Devices get hotter, faster. The necessary 
heat sinks can be massive, bolt-on assemblies that 
are incompatible with test fixtures. 

• Power management – devices are designed for 
power and thermal efficiency. Thus they can “turn 
off” subsystems which are idle or at thermal risk. 

• I/O interfaces – these are vastly more complex, 
with serial protocols, embedded clocking, very 
high data rates and analog “tuning” for ultimate 
performance. 

• Complex bootup sequences – these incredibly 
complex devices have a lot of work to do just 
“waking up”. 

 
Boards that use these ICs have also evolved. They 

are (of course) far more complex. Since the devices on 
these boards use several lower voltages but much higher 
currents, it has become common for a board to regulate 
several lower voltages from one much higher voltage by 
use of on-board DC-to-DC converters, often imple-
mented with discrete analog components.  

It is quite common for the act of applying power to 
a board to be a complex, sequential series of actions 
taking hundreds of milliseconds or more. Disturbances in 
the regulation process can produce “exothermic events” 
very quickly, sometimes with spectacular (also expen-
sive) effect. 

The heat generated in these devices is also prob-
lematic, so exotic cooling mechanisms are more common 
these days. That said, these cooling structures are often 
not in place during board testing for practical reasons. 
This can place restrictions on how long boards are 
powered during testing. 

Circuit access used by bed-of-nail testers is (as 
usual) more difficult to achieve, placing more limits on 
what can be tested without the assistance of Boundary-
Scan-based tests. Thus, we see increasing numbers of 
ICs on boards that contain 1149.x technologies. This 
same lack of access means we cannot detect as many 
potential shorts on boards while the power is still off. 
Testing for shorts with the power on is more risky, but 
also inevitable. 

Today’s board test or system test engineer is 
finding increasing challenges in guaranteeing the safety 
of boards (and fixtures and operating personnel) due to 
many of these trends. At the same time they are under 
increasing pressure to decrease test costs as well. It can 
be very difficult to figure out solutions, especially when 
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a board’s design team has not given the test engineer 
some “hooks” to use in solving these problems. 

4 Current 1149.1 Modal States 
The IEEE 1149.1 standard views silicon devices as 

having two basic operations, here called “modal states”. 
The first is “non-test modal state” (also referred to as 
“mission mode” in the literature) and the second is “test 
modal state”. A device will toggle between these two 
modal states when a “test mode instruction” such as 
EXTEST is loaded versus a “non-test mode instruction” 
such as BYPASS is loaded. See the diagram in Figure 1. 

Figure 1: The basic modal state model for 1149.1. 
This model also shows (in dashed lines) that there 

is another state of being powered off and that you 
progress from the power off state to the normal operation 
mode via some sort of power up or “boot” process. In 
some devices this is just by asserting the TRST* pin if it 
exists. In others, it is accomplished as a natural result of 
powering up the device as required by rule 6.2.1a) of the 
standard [IEEE01]. There is also a synchronizing 
sequence (5 TCKs with TMS held high) that can take the 
device to the Test-Logic-Reset state, but this is not 
required as a part of power up. Note the synchronizing 
sequence has the effect of jam-loading a non-test 
instruction, so it takes a device from test operation to 
non-test in such case. 

The “Master Reset” transition (think “reboot”) is 
accessible in the non-test modal state, but in the test 
modal state, that signal is ignored and does not disturb 
testing activities. 

The transitions in question here are those from 
“non-test modal state” to “test modal state”, and vice 
versa.  Both are triggered by loading instructions and so 
occur on the falling edge of TCK in the Update-IR TAP 
controller state, which is not synchronized to particular 
system activities. For example, a processor may be about 
to receive an instruction it is fetching from memory, but 

just as this instruction opcode arrives, the processor 
switches to EXTEST (assume the Boundary register cells 
are control-and-observe cells) so the opcode is blocked. 
How does the processor react internally? Also, the 
processor outputs are suddenly disconnected from their 
surrounding devices. What happens to them? This is the 
genesis of the lobotomy problem. Once the system is so 
violently disturbed, it is quite difficult to even imagine 
what the result could be, but it is easy to imagine the 
worst. 

Similarly, what happens when testing is complete 
and “non-test modal state” is re-entered? Again, we can 
only imagine (and cringe). Notice too that whenever the 
TAP enters the Test-Logic-Reset (TLR) state, this also 
forces the same transition. Since many standalone 
Boundary-Scan tests begin in the TLR state and end 
there too, this virtually guarantees lobotomization. 

5 The “Real” Modal State Model 
The reality of 1149.1 modal state changes is 

captured in Figure 2, where the lobotomized modal state 
is a “trap” that prevents the system from getting back to 
normal. The only path back to normal is by cycling 
power or possibly by the Master Reset process (in red), 
if that process is still workable in the lobotomized state. 

Figure 2: Basic model including lobotimization. 
Note that the modal state concept in Figure 2 

describes individual ICs, or full systems containing at 
least one 1149.1 IC. 

The next section describes a way of dealing with 
the lobotomy problem by the assignment of a new modal 
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state. This modal state would be accessed via new 1149.1 
instructions. 

6 The “Ready-for-Test” Modal State 
As IC technology has evolved, there are a lot of 

internal features inside ICs that take some time to 
become ready for normal operations to commence. For 
example, internal phase-lock loops have to acquire a 
frequency and lock onto it. Internal charge pumps may 
have to create internal voltage references. High-speed 
I/O paths may have to be “tuned” for optimal 
performance. Selectable I/O pin voltages may need to be 
programmed, and so forth. These internal “boot up” 
processes may be application dependent, so the board-
level context will affect the end results. Once these ICs 
are booted, they then may access system boot code and 
begin higher level activities like loading operating 
system code, accessing storage devices, etc.  

In the middle of all of this, a manufacturing test 
could suddenly start up, lobotomizing the system. 
However, by adding a new concept of a modal state 
dedicated to the test problem, it is possible to avoid some 
of the nasty implications of undefined behaviors. This 
modal state can be called “Ready-for-Test”, and it is 
inserted between the non-test modal state and the test 
modal states. See the diagram in Figure 3. 

Upon powering up, a device will enter the non-test 
modal state as always. There it will stay until power 
down, or, a new “INITIALIZE” process is performed 
via new 1149.1 instructions. (For now, please ignore the 
red transitions in Figure 3.) The INITIALIZE process 
will take a period of time and/or some number of TCK 
and/or system clocks to produce a state that is compatible 
for testing. Some of the things INITIALIZE might do 
are: 

• Shut down phase-lock loops, or switch them to a 
benign internal reference oscillator, before 
EXTEST disconnects the I/O. 

• Put power-hungry subsystems that can be powered 
down into low power modes. This is particularly 
important when heat sinks or fans may be missing 
on devices, which is common during board 
manufacturing test. 

• Put internal state machines and analog subsystems 
into quiescent modes. This reduces power con-
sumption and noise generation. 

• Disable internal busses to remove the opportunity 
for bus contentions. 

• Turn on 1149.x circuitry needed for testing. For 
example, IC designers implementing IEEE 1149.6 
[IEEE03] have complained that the test receiver 
circuits are power hogs that they only want to turn 
on when needed for testing. 

• Configure I/O properties of the device’s pins so as 

to be compatible for testing. For example, voltage 
levels for drivers and receivers can be selected 
and drive strengths and slew rates can be 
optimized for the rather pedestrian needs of 
Boundary-Scan testing. 

Figure 3: Adding a new "ready-for-test" modal state. 
This last example implies that some application 

specific configuration data may need to be supplied and 
indeed this is the case. Further, it is anticipated that more 
complex devices will need INITIALIZE, but simpler 
devices may not. Finally, it would be best if any devices 
in a chain of devices that need INITIALIZE will be able 
to execute such routines in parallel while the others 
“stand by”. When the INITIALIZE process is complete, 
then the device is “Read-for-Test”, meaning test mode 
instructions like EXTEST will be effective and the 
devices will be well-behaved during testing. It’s like 
announcing to them: “We are going to start testing soon. 
Do whatever you need to prepare.” 

The INITIALIZE process is thus invasive to the 
“normal” (non-test) operation of the device (and system). 
The process systematically calms the system into a “safe 
and cool” state where subsequent testing can commence 
without fear of nasty side effects. However, it has the 
important characteristic of being able to respond to a 
“Master Reset” by returning the device back to the non-
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test modal state. It is also envisioned that an optional, 
perhaps proprietary “RESTORE” instruction could be 
available to invoke this same master reset process via the 
TAP.  

Another important property is that from the ready-
to-test modal state we can proceed back and forth to the 
test modal state, and the conditions set up by 
INITIALIZE remain in effect. Thus, a sequence of 
Boundary-Scan tests that need this calm, ready-to-test 
state can each start and end in the Test-Logic-Reset state 
without need of executing the INITIALIZE process 
between each. Since the time (and data) needed to 
INITIALIZE all such devices on a board could be 
significant, it is more efficient for the state created by 
INITIALIZE to be persistent.  

The transitions marked in red in Figure 3 show the 
case where test mode is entered without benefit of the 
INITIALIZE process. This takes the device (or system) 
to test mode, but the necessary conditions to support 
testing may not be in place. This is termed a “compro-
mised test modal state”. Testing this way may or may not 
be successful, particularly if I/O setups needed for test 
are not the default states of the I/O pins in devices that 
utilize INITIALIZE. These red transitions should thus 
be avoided.1 

The next section describes some new, optional 
1149.1 instructions that support some of these concepts. 
Not all are currently supported (as will be noted) since 
there is some continuing debate about which concepts 
are practical or impractical to support. 

7 New 1149.1 Initialization Instructions 
The 1149.1 Working Group is studying the addition 

of two new instructions to support a formal concept of 
initialization for testing. Both are optional, so devices 
supporting an initialize process will implement at least 
one of them. 

7.1 The INIT_SETUP instruction 
This optional instruction is non-intrusive (like 

PRELOAD or BYPASS) and is used to set up 
application-dependent data needed to support 1149.1 
testing. It targets an INIT_DATA data register which 
will receive parameters needed to set up the environment 
needed by test instructions. 

The classic use for this instruction is to set up I/O 
pin operating parameters. For example, many devices 

                                                 
1 Changes to BSDL are needed to support INITIALIZE. A 
device that supports INITIALIZE would have a new BSDL 
Component_Conformance statement that would not be recog-
nized by legacy software. Such software would not be able to 
process the new BSDL and thus force the question of 
upgrading it. 

have programmable logic levels on their I/O pins, 
allowing them to be used in multiple environments, such 
as with 3.0 volt logic, or 1.5 volt logic. The drive voltage 
levels and receiver thresholds on such a device will need 
to be configured for the device’s environment. Thus 
multiple instances of the same IC on a board may end up 
with different configuration loads into their INIT_DATA 
registers. The configuration data does not immediately 
reprogram the I/O behavior (as this would be invasive to 
IC functionality), but when a pin-permission instruction 
like EXTEST (or INIT_RUN described next) is loaded, 
putting the device into test mode, the I/Os respond to the 
configuration data held in INIT_DATA at that time. 

Other setup data may be needed as determined by 
the device designer. Thus the INIT_DATA register may 
be logically divided into fields that serve separate 
purposes. The working group is developing new BSDL 
(Boundary-Scan Description Language) constructs for 
conveniently labeling and describing these fields. A test 
engineer developing a test program for a board or system 
will need to set up a “side file” of configuration data for 
each IC that supports the initialization process. A user 
interface that reads the device BSDL will be able to 
present the options to a test engineer with meaningful 
labels, so s/he can make the right choices for loading 
INIT_DATA of a given device. These choices will be 
determined by the device’s environment, and information 
from the device’s data sheet, if needed. 

7.2 The INIT_RUN instruction 
This optional, intrusive instruction drives the 

internal state machines needed to execute the initialize 
process, which may use data previously provided by 
INIT_SETUP. The INIT_RUN instruction is similar to 
the 1149.1 CLAMP instruction in that it uses data in the 
Boundary register to fix the output drivers at a 
predetermined state for the duration of operation of 
INIT_RUN. This means a preceding PRELOAD 
sequence is needed to set up the Boundary register with 
data to define these output states. Also, if the device has 
programmable I/O states, these should be set up in 
advance by INIT_SETUP. More detail about this is given 
in section 8 below. 

INIT_RUN differs from CLAMP in that it targets 
an INIT_STATUS register between TDI and TDO 
(rather than the Bypass register). INIT_RUN also has a 
time specification for its duration, which may be some 
number of TCK cycles, system clock cycles, or, elapsed 
time. The INIT_RUN instruction may take an 
appreciable time to execute, and while this is occurring, 
the I/Os are clamped to a consistent state. The status 
register will indicate a minimum of a “Done” bit and 
possibly a “Success” bit too. (Success indication is a 
matter of some debate among IC designers.)  

The Done bit is expected to be set by the time the 



 

Paper 19.2 IEEE International Test Conference 6 
 

duration specification has been met, but it could be set 
earlier if the device designer has options that can 
complete earlier. Thus, polling could be performed to 
end the initialize process earlier. The duration is a 
“maximum” specification. 

The Success bit (if provided) indicates that the 
INIT_RUN process’s self-assessment is that it completed 
its task successfully, or sensed some sort of internal 
exception. In the event of a status failure, it may be 
pointless to continue the test. Additional INIT_STATUS 
bits can provide more information as to what is being 
sensed, to aid in assessing what should be done with the 
board. 

7.3 A proprietary “RESTORE” instruction 
A RESTORE instruction is not currently being 

considered by the working group. This optional, 
proprietary instruction provides a TAP-accessible means 
of re-booting a device, and provides the same effect as 
asserting a Master Reset signal. It is considered 
proprietary based on the belief that the 1149.1 standard 
should not provide a body of rules about how this is 
implemented beyond providing a name and invocation 
method for such a function. Because activating such an 
instruction is a conscious act, it should work in either 
non-test or test mode, whereas, triggering a Master Reset 
signal can only work in non-test mode. 

7.4 Persistent “Ready-for-Test” modality 
The working group has considered the importance 

of the “Ready-for-Test” modal state being persistent 
even when the TAP travels into the Test Logic Reset 
state. In section 6 it was argued that this could allow a 
single invocation of INIT_SETUP/INIT_RUN to prepare 
a Boundary-Scan-based board or system for a group of 
independent Boundary-Scan tests that were successively 
executed. However, IC designers have indicated this 
could be difficult or expensive to achieve in some device 
architectures. Thus, the Ready-for-Test modal state is 
(currently) not envisioned to persist across a TLR 
boundary. This means every independent Boundary-Scan 
test must, as its preamble, perform INIT_SETUP/-
INIT_RUN before proceeding into test functionality. 

The non-persistence of Ready-for-Test changes the 
modal state diagram to that shown in Figure 4. Here we 
see the “Lobotomized” modal state reappearing as a 
destination from active testing. The initialize process can 
restore the Ready-for-Test modal state from the 
lobotomized state, or a Master Reset (or RESTORE) can 
return to the non-test modal state. The TAP-based 
RESTORE instruction can also “abort” a test and move 
back to the non-test modal state, which is something a 
Master Reset cannot do from the Test modal state. 

A set of manufacturing tests for a board would 

commence as follows: 
1. Turn on power, board moves to Non-Test 

modal state and boots up. The bootup process 
may or may not complete before the test starts. 

2. Use PRELOAD to set up first test events. (Stay 
in Non-Test modal state.) 

3. Perform the INITIALIZE process in all ICs 
that support it (see detail in section 8). This 
moves to the Ready-for-Test modal state. 

4. Proceed into testing with EXTEST in all ICs; 
now in Test modal state. 

5. End test, TLR causes Lobotomized modal state 
to be entered. Quickly proceed to step 6. 

6. Subsequent tests progress from Lobotomized 
modal state via step 2 above. Then power down 
or cause a Master Reset (or RESTORE) to 
bring back Non-Test modal state. 

Figure 4: Modal states for non-persistence of Ready-
for-Test (note some power-down transitions omitted 
for clarity). 

If one of the series of test should fail, then there is a 
question of whether to proceed with the following tests 
or quit testing. Quitting may be the preferred action if a 
test has discovered shorts on the board; shorts could 
cause collateral damage. If quitting is the required action, 
then powering down the board may be performed next. 

8 INITIALIZE in Boundary-Scan Testing 
Before examining the implications of initialization 

on Boundary-Scan tests, it helps to map out a typical 
Boundary-Scan test that would check for interconnect 
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defects on a board with two garden-variety Boundary-
Scan ICs. The basic process is shown in Table 1 (at the 
end of this paper). It shows 8 steps, the first 3 of which 
are performed in Non-Test mode. These are used to set 
up the first test vector behind the device drivers. At step 
4, the EXTEST instruction becomes operational which 
both lobotomizes the devices (and board) and causes the 
first test pattern to propagate out of the Boundary-Scan-
controlled drivers across the board to Boundary-Scan 
receivers. Steps 5 and 6 iterate this until all test patterns 
have been propagated. Step 7 flushes out the captured 
results of the last test pattern, while filling the Boundary 
registers of all the devices with a benign “safe” pattern. 
Finally, at step 8, the Test-Logic-Reset state is entered, 
completing the formal Boundary-Scan test. This also 
returns control of all Boundary-Scan drivers back to the 
system logic, whatever it may be doing. 

Now look at what the INITIALIZE process adds to 
the test, as shown in Table 2 (at the end of this paper). 
This example considers a chain of 4 devices. Device1 
has no support for INITIALIZE at all. It could be a 
legacy component, or, a simple device that needs no 
initialization. The second device, Device2, implements 
INIT_SETUP only. It may have some I/O pins that need 
to have their voltage levels set accordingly so they can 
communicate with surrounding circuitry. Device3 imple-
ments INIT_RUN only. It may have some internal power 
domains that can be shut down to reduce heat dissipation 
during testing. Finally, Device4 implements both 
INIT_SETUP and INIT_RUN. It has I/O levels to set, 
and other internal functions that need to be managed 
before test begin. Both Device3 and Device4 produce a 
“Done” bit in their status registers. (In this example, we 
do not consider the import of a “Success” bit and what 
the test would have to do if Done was set, but Success 
was not set.) 

Table 2 is an expansion of Table 1, with 5 new 
steps inserted between steps 3 and 4 of the original test 
(highlighted in yellow). Essentially, steps 1-3 establish 
the first test pattern in the Boundary registers of the 
devices, but before switching to EXTEST to begin the 
test, the INITIALIZE process commences. Then step 
Init1 loads either BYPASS or INIT_SETUP in the 
devices. Both are non-test instructions so the devices 
continue doing their functional operations. At step Init2 
the two devices that support INIT_SETUP are then 
loaded with setup data, while the other two continue with 
BYPASS. If none of the devices in a chain support 
INIT_SETUP, then steps Init1 and Init2 could be 
skipped. 

Next, at step Init3, all 4 devices switch control of 
their drivers to the Boundary register, executing either 
EXTEST, or INIT_RUN. This lobotomizes the devices 
(and the board). Back at Step 3, the data needed for the 
first test pattern was preloaded into the Boundary 

registers. So at this point in time, that pattern is being 
propagated across the board, but, there is more initialize 
work to be done yet. 

At step Init4, devices 3 and 4 are shifting out their 
status registers. But, devices 1 and 2 are doing EXTEST, 
so we must shift the same data from Step 3 back into 
them so that their drivers will continue to hold the first 
pattern data constant. This has the effect of making status 
checking fairly data intensive, if the Boundary registers 
in devices 1 and 2 are long. At Step Init5, the “Done” 
bits shifted out are checked to see if INIT_RUN has 
completed. If not we go back to Step Init4 and try again. 

Once step Init5 finds both devices 3 and 4 are done 
with INIT_RUN, our original test process commences at 
Step 4, where all the devices are set up to run EXTEST. 
The Boundary register data set up by Step 3 is still in 
place, so the “standard” Boundary-Scan test proceeds as 
before. The major difference is that the time between the 
start of the first test pattern and the second test pattern is 
lengthened by the time required to do the initialization. 

9 Conclusion 
The “Lobotomy Problem” has been described, with 

motivation for why it should no longer be ignored. A 
well-defined and controlled process for preparing for test 
mode is proposed. Discussions with IC designers and test 
engineers as well as board and system architects have 
been solicited. Their input is reflected in a proposal for 
1149.1-based support of an INITIALIZE process. 

However, perceived silicon design difficulties have 
precluded the creation of a persistent “Ready-for-Test” 
modal state, resulting in Boundary-Scan tests that still 
leave devices (and boards) in lobotomized states when 
testing completes. Test engineers will still need to eval-
uate what this means and how they should deal with it. 
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Table 1: The 'Interconnect' test process. 
Step Action Why Device 1 Device 2 

1 TLR Initialize TAP. Garden variety Boundary-Scan 
device. Garden variety Boundary-Scan device. 

2 IRScan Get ready for 
EXTEST. Load PRELOAD Load PRELOAD 

3 DRScan Set up first BReg 
pattern of test. 

Shift test data into BReg, ignore 
data out. 

Shift test data into BReg, ignore data 
out 

4 IRScan Switch to test 
mode. 

Load EXTEST. This lobotomizes 
the device at Update-IR. 

Load EXTEST. This lobotomizes the 
device at Update-IR. 

5 DRScan Set up next test 
pattern. 

Shift test data into BReg, save result 
data out. 

Shift test data into BReg, save result 
data out 

6 Loop?  
Multiple test 
patterns. Return 
to step 5. 

  

7 DRScan Shift out last 
pattern result. 

Shift safe data into BReg, save data 
out. 

Shift safe data into BReg, save data 
out. 

8 TLR 
End of test, 
analyze result 
data. 

I/O reconnected, but device still 
lobotomized. 

I/O reconnected, but device still 
lobotomized. 

 
 

Table 2: Interconnect test with an INITIALIZE preamble for 3 of 4 devices.  
Step Action Why Device 1 Device 2 Device 3 Device 4 

1 TLR Initialize TAP. 
Garden variety 
Boundary-Scan 
device. 

Has INIT_SETUP 
only. 

Has INIT_RUN 
only. 

Has both 
INIT_SETUP and 
INIT_RUN. 

2 IRScan Get ready for 
EXTEST. Load PRELOAD. Load PRELOAD. Load PRELOAD. Load PRELOAD. 

3 DRScan Set up first BReg 
pattern of test. 

Shift test data into 
BReg, ignore data 
out. 

Shift test data into 
BReg, ignore data 
out 

Shift test data into 
BReg, ignore data 
out 

Shift test data into 
BReg, ignore data 
out 

Init1 IRScan Get ready for setup 
data Load BYPASS Load 

INIT_SETUP Load BYPASS Load INIT_SETUP 

Init2 DRScan Load setup data   Shift Device2 
setup data.  Shift Device4 setup 

data. 

Init3 IRScan 
Complete init 
process 

Load EXTEST, 
controls outputs, 
lobotimization. 

Load EXTEST, 
controls outputs, 
lobotimization. 

Load INIT_RUN, 
outputs clamp, 
lobotimization. 

Load INIT_RUN, 
outputs clamp, 
lobotimization. 

Init4 DRScan Read out status Load in same data 
as step 3. 

Load in same data 
as step 3. Device3 status out Device4 status out 

Init5 Loop? If not “Done” go to 
step Init4.   Check Device3 

status. 
Check Device4 
status. 

4 IRScan Set up chain for 
test Load EXTEST. Load EXTEST. Load EXTEST. Load EXTEST. 

5 DRScan Set up next test 
pattern. 

Shift test data into 
BReg, save result 
data out. 

Shift test data into 
BReg, save result 
data out. 

Shift test data into 
BReg, save result 
data out. 

Shift test data into 
BReg, save result 
data out. 

6 Loop? 
Multiple test 
patterns. Return to 
step 5. 

    

7 DRScan Shift out last 
pattern result. 

Shift safe data into 
BReg, save data 
out. 

Shift safe data into 
BReg, save data 
out. 

Shift safe data into 
BReg, save data 
out. 

Shift safe data into 
BReg, save data 
out. 

8 TLR End of test, 
analyze result data. 

I/O reconnected, 
but still 
lobotomized. 

I/O reconnected, 
but still 
lobotomized. 

I/O reconnected, 
but still 
lobotomized. 

I/O reconnected, 
but still 
lobotomized. 
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