
implementation of statistical simulations in
microwave designs (and III-V designs, specifi-
cally) is very limited, even though it is well es-
tablished in the silicon (Si) digital or analog-
mixed signal worlds. What are the barriers?
The methodology used in the Si design com-
munity is usually built around Monte Carlo
(MC) simulations.1-4 MC-based simulation is
inherently time consuming, but necessary for
most Si designs, where neighboring device
mismatches are critical due to much smaller
device sizes. The complicity and huge amount
of time makes it “unfit” to III-V designs,
where wafer turn-around time is much shorter
(weeks rather than months, typical for Si de-
signs). Si foundries may also provide “corner”
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In wireless handset design, specifically
power amplifiers (PA), there is constant
pressure to improve time-to-market while

maintaining high yields. To meet these de-
mands, designers need to evaluate current de-
sign practices and identify areas for improve-
ment. Presently, most PA designers spend a
great deal of time bench-tuning to optimize
circuits. Since this is very time consuming, the
main consideration is obtaining the best
“nominal” performance, and process variation
(or whether the wafer used for tuning is opti-
mal) is generally an afterthought.
One common occurrence is that new cir-

cuit topologies are tried and minimal sample
sizes are taken on a single wafer, often leading
to “measured hero results.” However, once
the design is run over many wafers, normal
process variations may result in large perfor-
mance changes that may give unacceptable
yield levels. These variations are often blamed
on the starting material or the fabrication
process but, in reality, are usually due to ex-
pected process variations.
Including process statistics in the simula-

tion phase would greatly reduce the occur-
rence of these frustrating events. However,
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models, but these are largely derived
by driving figures of merit (like fT)
that are not appropriate for most RF
designs, where multiple criteria are to
be met in one design. Some also pro-
vide customers with the option of
wafer lots that capture the expected
process variation (due to changing
process variables),5 but do not pro-
vide a convenient way for customers
to simulate exactly that set of wafers.
Another major obstacle is the model-
ing approach of traditional GaAs de-
vices, which is curve-fit-based rather
than physics-based. The curve fitting
makes it cumbersome, if not impossi-
ble, to provide a set of models that
accurately tracks real-life process
variations. Finally, most statistical
analysis training focuses on using a
particular software package, separate
from the tool used for circuit simula-
tion.6 This creates a barrier, since de-
signers often do not have the time to
learn another piece of software (or do
not want to further fragment the de-
sign flow).
To overcome these barriers, sever-

al key considerations are offered in
the development of a statistical-simu-
lation-included designer-friendly de-
sign flow.
The approach should:

• Be predictive and approximate—
real life examples (no non-physical
variations are allowed).
• Be simple, convenient and faster
than “trial-and-error.” Otherwise, it is
viewed as an extra burden or nice
“window dressing” for design reviews.
• Provide insight into what can be
changed to make a better design, not
just indicate how “poor” the design is.
The simulation approach should be
intuitive enough that designers can
easily assess layout or design changes
to reduce variation.
• Allow closure of the simulation loop
by comparison with measurement of
similar process spread wafers.
A design flow has been implement-

ed, which takes advantage of the attrib-
utes of III-V HBT technology, by
adopting a “unified” modeling ap-
proach and design-of-experiment
(DOE) statistical simulation, selecting
orthogonal only epi/process/operational
variables, and using Advanced Design
Systems (ADS) allowing high level inte-
gration of design, simulation and statis-
tical analysis of a PA in a single tool.
Two examples are presented that

significantly reduced circuit perfor-
mance variation while maintaining
the same nominal performance.
These improved results demonstrate
that with the same
epi/process/operational specifications,
the design topology and layout choic-
es can obviously impact performance
variation.
Since the DOE-based flow makes

designers aware of process variation
and allows the exploration before
committing the design to GaAs, more
process tolerant designs are achieved.
This approach has resulted in the fol-
lowing benefits:
• The resulting designs are more ro-
bust and show less variation. This im-
proved consistency allows customers
to “set it and forget it” once these
parts are used.
• These simulations are part of the
design review to ensure that the de-
sign topology is solid. This provides
some foundation for failure-modes
effects and analysis.
• In the early stages of development,
it has eliminated numerous circuit
topologies that were terrible in terms
of process variation.
• It provides guidance on future di-
rections for process development and
has allowed it to refine the Process
Control Monitor (PCM) develop-
ment (DOE simulation has been
used on the PCM measurements to
understand if the measurement is re-
ally measuring what is thought).
• It provides a tool to determine if a
designer requests for tighter control
on a parameter, such as beta, is rea-
sonable or if there is another root
cause for their variation.
• It is a valuable de-bugging tool (it
can simulate how much variation is ex-
pected from one of the theorized
causes). This is faster and easier than
running the wafers or, at the very least,
can guide what wafers get run. Simu-
lation also helps eliminate other fac-
tors that may be the cause of the varia-
tion (so the need for a die level change
or board level change is known).

KEY ELEMENTS OF THE
APPROACH
The “unified” modeling and DOE

simulation elements are based on the
assumption that PA designs use large
devices, so that device mismatch is
negligible. The orthogonal-only-vari-
ables element focuses on further re-

duction of necessary simulation runs.
The Pareto-drive really provides clear
directions for designers on what to im-
prove. Finally, the high level integra-
tion, everything into ADS, makes this
design flow a powerful and practical
tool for the III-V design community.

“Unified”Modeling
The unified modeling approach is

the foundation of this design flow. It is
a geometrical and physical modeling
approach, which is described in more
detail in the references.7,8 The term
“unified” refers to the concept that de-
vices fabricated from the same junc-
tions or layers are forced to share, not
only the same variation, but often the
same model parameters.
For III-V HBTs technologies,

front-end devices are formed by re-us-
ing junctions (base-emitter or base-
collector junctions, etc.) or layers
(emitter, base, sub-collector), and
back-end devices (such as thin-film re-
sistors, MIM capacitors and inductors)
are independently formed but also
share things like metal layers. The
model parameters are separated into
two sets: layout (geometry) dependent
and material (epi) dependent. The
geometry dependent parameters de-
scribing same type but different size
devices, when varied, affect all devices
of that type or sharing those layers
equally. The geometrical depen-
dence/variation is particularly impor-
tant for resistor simulations. The ma-
terial-dependent parameters allow to
model the same geometry set of de-
vices on a different epi by only chang-
ing a few parameters based on the
specifics of the material design and
drive variations across devices that
share the same material layers, result-
ing in a greatly reduced total mod-
el/variation parameters for covering all
devices in any given epi material.
A good example of this approach is

shown in Figure 1, which illustrates
how a semiconductor resistor (fabri-
cated from the base layer of the
HBT) model is constructed, and how
it predicts the device behavior. In the
model, the base sheet resistance is di-
rectly linked with a HBT parameter,
β, and the base-collector junction
diode model is directly “borrowed” to
the model topology to describe the
underneath layer. This direct “bor-
row” and “link” approach, since it is
physical based, characterizes the re-
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sistor electrical behavior very well.

How“Unified”Modeling is Different
from Traditional Modeling Approach
In a traditional curve-fitting ap-

proach, different devices were mod-
eled independently and little thought
was given to consistency of the de-
vices, such as HBTs, which did not
share the model parameters with
junction diodes or semiconductor lay-
er resistors. In the extreme, the mod-
el parameters for the devices of the
same type, say HBTs of different size
or geometries, were not linked. As a
result, it would take many parameters
to vary each of these devices statisti-
cally on an individual basis, and some
non-physical statistical states may be
simulated.

Discussion on“Unified”Modeling
and“Corner”Modeling
A simulation approach based on

individual device corner modeling
has been reported for some devices.9
That approach was only useful if
there was only one design perfor-
mance criteria, or for characterizing a
system in which a single component
really dominated the system behavior
while other components’ variations
were negligible, or when all the com-
ponents varied independently (as if
the parts were all independent dis-
crete components). The possible sta-
tistical system responses, in these cas-
es, could be obtained by simulating
through the combinations of all the
corners of all different devices being
corner-modeled. However, for an
MMIC, the assumption that circuit
components vary independently, or

that one device changes while other
devices are constant are clearly incor-
rect. Adopting that approach would
result in non-physical states and a lot
of wasted effort worrying about varia-
tions that could never occur in reality.
This unified modeling approach is a

physical corner modeling approach. It
instantly generates corner models, by
inputting statistical DOE parameters,
which control all the on-chip devices
together rather than individually and
naturally guarantees physically possi-
ble circuit corner responses. It also re-
quires less simulation iterations than
running through different individual
device corner models.

Statistical Variable Selection
For a GaAs HBT chip, there are

many variables that can potentially be
changed based on starting material or
fabrication variation. For epi-variation,
the models were implemented to al-
low individual material parameters
(like doping and thickness) to be var-
ied. However, for this work, model pa-
rameters are used (such as beta) that
are actually responses to the doping
and thickness.7 This link is necessary
to help understand the circuit re-
sponse (that is, it is important to know
which parameter caused beta to
change). As a result, only independent
(orthogonal) epi and process variables,
represented by model parameters, are
made accessible for circuit statistical
simulations, even though the orthogo-
nality is not a requirement for general
statistical simulation. The benefits are
it minimizes the simulation time for
the same circuit response one would
get with more correlated variables and

it eliminates any non-physical circuit
responses of correlated parameters go-
ing in uncorrelated directions. The ac-
cessible parameters are listed in Table
1. The variations of the independent
parameters are obtained from PCM
data, which also provides the correla-
tion parameters (based on material
DOE runs)10 and validation of the or-
thogonality of the parameters.11 Re-
viewing the semiconductor resistor ex-
ample again, instead of using both Ω/�
and β variables to describe the resis-
tor’s and HBT’s variations, only β is
made accessible (but Ω/� changes ac-
cording to β inside the model code) to
simulation. The strategy is to catch as
much variation as possible with as few
parameters as possible. The circuit op-
erational variables are set to be simu-
lation parameters as well.
Another feature of this implemen-

tation is that all the statistical parame-
ters can be easily fixed to their nomi-
nal values. This allows designers to
skip simulations of parameters that
are not important for their particular
design (for example, why simulate
Schottky diode variation if it is not
used in your circuit?), which greatly
reduces the total simulation time. The
number of statistical parameters in a
typical circuit simulation, after such a
selection approach, is less than 10.

DOE versus MC
The predicted mean and distribu-

tion ranges from MC depend on the
number of variables and the number of
simulations. The higher the ratio of
simulation runs to the number of vari-
ables, the more accurate the predic-
tions are. In reality, one normally does
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� Fig. 1 Example of the unified modeling approach; (a) base layer resistor model and (b) predicted impedance drop.
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Icq(mA) = 235 − 0.768beta − (1)
34.5VT − 1.69TaNRho + 0.336 Ref

Icq(mA) = 240 − 0.768beta − (2)
34.6VT − 1.69TaNRho + 0.310 Ref

Full Factorial DOE is Necessary
To refine the DOE approach, different DOE designs

were studied. As seen in Appendix A, the full factorial
DOE method (2kmp) gives consistent results with the
much denser sampled 3k method, but takes much less time
to run. The results of other DOE methods are not consis-
tent with each other, even though they need a little less
time than the full factorial method. The reason for the in-
consistency of some other DOE methods is partly due to
the orthogonal only (at device level) variable selection. The
full factorial method is optimal, considering accuracy and
simulation time, and was selected to be the method imple-
mented in the design flow.

DOE versus “Sensitivity Analysis”
“Sensitivity Analysis” simulation is also evaluated. It

predicts totally different results than the full factorial
DOE and the dense sampled DOE (3k). The reason is that
the “sensitivity” method only considers small perturbations
around a nominal condition, with one parameter changed
at a time. It is not a recommended method to improve de-
sign robustness.

Integrated Design Flow in ADS
The fact that models, design circuits, DOE simulations

and the instant simulation analysis are all integrated into ADS

not really know which of the selected variables will have the
most impact on a particular circuit design. Running hours of
simulation to find this out is not very appealing. Worse, it
could result in the most important parameters not getting se-
lected because not enough simulation iterations were run.
Both cases could lead to non-realistic distribution range pre-
dictions and less accurate mean predictions. DOE is widely
used in the semiconductor industry. A short tutorial article to
help readers understand DOE methodology is provided
through the following link: http://www.agilent.com/find/eesof-
doe. In the case that neighboring device mismatches are negli-
gible, the study indicates that DOE is really an optimal simula-
tion choice. Figure 2 shows in the situation of 4 variables,
64000 MC simulations led to much wider Icq ranges than that
of 240 MC simulations. Since typical products ship in the mil-
lions, the ranges from 64000 MC simulations would be closer
to accurately represent what really happens. However, 64000
MC simulations take 18.5 hours to finish while 240 simulations
took only 470 seconds. The figure also shows that the results of
a large number of MC simulations are required to approach
the results of running a full factorial DOE simulation. The dif-
ference is that the DOE approach only took 28 seconds. To
further investigate, the effect of each of the five variables in-
volved in 250 runs MC and full factorial DOE simulation (25 =
32 runs) of another design was analyzed using JMP statistical
software. The results are shown in Figure 3. The analyzed ef-
fects can be expressed by Equations 1 (MC) and 2 (DOE).
Comparing these equations, it is obvious that the weight and
direction of each variable from both results are identical. The
main difference is the predicted means. As indicated earlier,
this can be caused by using too few MC runs for the number
of variables.

TABLE I
INDEPENDENT OPERATIONAL VARIABLES AND THEIR CORRE-

SPONDING CIRCUIT OPERATIONAL CHANGES
INDEPENDENT PROCESS/EPI STATISTICAL VARIABLES

VT (V) (FET threshed)

Beta (DC gain)

Ref (Ohm) (Re for PCM device)

Vbe (V) (HBT turn on voltage)

TaNRho (Ohm/sq) (for Rt, TaN resistor)

dw (µm) (for Rt, TaN resistor)

dl (µm) (for Rt, TaN resistor)

dwb (for Rb, TaN base resistor)

dlb (µm) (for Rb, base resistor)

RhRho (Ohm/sq) (for Rh, Implant resistor)

dwh (µm) (for Rh, Implant resistor)

dlh (µm) (for Rh, Implant resistor)

MIM capacitance area density (fF/µm2)

SCdv (V) (Schottky diode turn on voltage deviate from nominal)

BCdv (BC diode turn on voltage deviate from nominal)

CIRCUIT OPERATION “STATISTICAL” VARIABLE
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� Fig. 2 Circuit response comparison between DOE and MC
simulations; (a) 240 MC simulations, (b) 64000 MC simulations and
(c) full-factorial DOE.



(see Sidebars 1 and 2) really makes the
DOE design flow practical, even for
those not so statistically savvy designers.
In Sidebar 2a a few different circuit
performances (the green lines) are dis-
played. The statistical state, for the per-
formances where the markers are land-
ed, is displayed as well. The markers on
different performances plots are syn-
chronized, that is when one marker on a
particular measure is moved, the mark-
ers on other performance measures are
automatically moved to indicate the
performances of the same statistical
state. Traditionally, statistical analysis,
requiring special software and training,
has been intimidating to many design-
ers and has been one of the major barri-
ers to its use in PA design.
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PARAMETER ESTIMATES
TERM ESTIMATE STD ERROR t RATIO PROB>⎥t⎥
Intercept 235.12907 2.205585 106.61 <.0001*
beta −0.768165 0.005714 −134.4 <.0001*
VT −34.46339 0.685096 −50.30 <.0001*
Rho −1.686377 0.037747 −44.68 <.0001*
Re 0.3360732 0.023789  14.13 <.0001*

PARAMETER ESTIMATES
TERM ESTIMATE STD ERROR t RATIO PROB>⎥t⎥
Intercept 240.24561 4.165511 57.67 <.0001*
stat_beta −0.781703 0.011833 −66.06 <.0001*
VT −34.64583 1.360798 −25.46 <.0001*
stat_TaNRho −1.694079 0.071621 −23.65 <.0001*
stat_Ref 0.3102022 0.050029 6.20 <.0001*
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� Fig. 3 Comparison of statistical parameters’ effects of an auto bias circuit; (a) MC
simulations (250 runs) and (b) full-factorial DOE (32 runs).
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� Fig. 5 Dual-band PA design using DOE
simulation of Icq1 and Icq2.
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� Fig. 6 Dual-band PA design using DOE
simulation for gain.

� Fig. 4 The DOE Pareto driven design flow chart.
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� Fig. 7 Pareto charts for initial design; (a)
Icq1 variations, (b) Icq2 variations and (c)
gain variations.
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� Fig. 8 Performance after modifications to
reduce the impacts of top-order variables.

The DOE Pareto Driven Design Flow
As shown in Figure 4, the inte-

grated design flow consists of itera-
tions of DOE simulations, reviewing
circuit performances, reviewing
Pareto charts, identifying circuit ele-
ment corresponding to top Pareto
factors for performance variation,
and modifying the circuit. Once
modified, the loop is followed until
satisfactory results are obtained. The
Pareto charts provide useful informa-
tion about which variables dominate
performance variation for the circuit.
Such information is powerful for
identifying which part of a design or
specific component needs to be mod-
ified.

RESULTS
Dual-band PA
The first-cut design had wide Icq

(see Figure 5) and RF gain (see Fig-
ure 6) variations. Pareto analysis
showed that threshold voltage varia-
tions of the FET devices, width varia-
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Battery voltage (Vcc) variations

caused large circuit performance
changes in the initial design (see Fig-
ure 9). Through the DOE Pareto
driven design flow, insufficient bal-
lasting and rising voltage on a partic-
ular node were identified as the root
cause. As a result, clamping diodes
and increased ballasting were imple-
mented in the circuit. Some mea-
sured data verified that as Vcc

changes from 3.2 to 4.5 V, Icq, after
the design improvements, is relative-
ly constant and the standard devia-
tions are largely reduced at high Vcc.
This example further illustrates the
effectiveness of the DOE Pareto dri-
ven flow.

CONCLUSION
This work is the first one to inte-

grate a unified modeling approach,
DOE statistical circuit simulations of

TECHNICAL FEATURE

tions of some critical thin-film resis-
tors, and DC gain variation of HBT
devices were the dominant factors for
the circuit performance variations (see
Figure 7). To address these top-order
effects, the internal reference voltage
and values of three resistors were
identified as the components to be
changed. The performance variations
were drastically reduced while the
nominal performances are kept the
same (see Figure 8).
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SIDEBAR II: (A) STATISTICAL RESULTS OF CIRCUIT PERFORMANCE AND (B) STATISTICAL PARETO CHART.



APPENDIX A
DOE METHOD COMPARISONS

Icq1(mA) at 25°C Variable Order in 25°C Pareto Chart

Method SimTime (sec) # Samples Icq1_Min Icq1_Max Icq1 Range VT Beta Vbe3 Ref Rho dw dl SCdv BCdv Vcc

2kmp 488 1024 19 31 12 1 4 5 2 3 6

Placket-Burman 8 12 19 27 8 1 5 4 2 3 6

Box-Behnken 33 181 21 27 6 1 4 5 2 3 6 7

CCD 493 1045 17 32 15 1 4 5 2 3 6

3K 16070 59049 19 31 12 1 4 5 2 3 6

Sensitivity 4 1 3 2

Icq2(mA) at 25°C Variable Order in 25°C Pareto Chart

Method SimTime (sec) # Samples Icq2_Min Icq2_Max Icq1 Range VT Beta Vbe3 Ref Rho dw dl SCdv BCdvVcc

2kmp 488 1024 34 54 20 1 3 5 2 4 6

Placket-Burman 8 12 35 48 13 1 3 5 2 4 6 7 8

Box-Behnken 33 181 39 48 9 1 3 5 2 4 6 7

CCD 493 1045 33 64 31 1 3 5 2 4 6 7

3K 16070 59049 34 54 20 1 3 5 2 4 6 7

Sensitivity 3 4 2 1

dB(S21) at 25°C Variable Order in 25°C Pareto Chart

Method SimTime (sec) # Samples dB(S21)_MindB(S21)_MaxdB(S21)_Range VT Beta Vbe3 Ref Rho dw dl SCdv BCdv Vcc

2kmp 488 1024 25.7 29.5 3.8 1 4 5 3 2 6 7

Placket-Burman 8 12 26.1 28.7 2.6 1 4 5 3 2 6 7

Box-Behnken 33 181 26.8 28.7 1.9 1 4 5 3 2 6 7

CCD 493 1045 24.2 29.7 5.5 1 4 5 3 2 6 7

3K 16070 59049 25.7 29.5 3.8 1 4 5 3 2 6 7

Sensitivity 3 2 1
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� Fig. 9 Measured data for a WCDMA FEM design.

both epi/process and circuit opera-
tional variables, Pareto analysis, as
well as design schematics into one
design flow for a PA design. Each it-
eration of design modification is
clearly driven by the Pareto-deter-
mined top-order variable, and the in-
teractive process of design modifica-
tion, simulation and obtaining feed-
back can be accomplished in a
matter of minutes. It is shown how
each key element in this system is
determined to make this work dis-
tinct from all other statistical or de-
sign works. The examples of utilizing
this approach demonstrate that
much tighter performances can be
achieved through modifying designs
even if epi/process specifications are
kept the same. Designers should
have an active role in determining
product robustness. As one can see,
there are too many benefits to this
approach to not adopt it. �
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