Accelerate R&D and design verification test of 802.11ac MIMO designs with a high speed, cost-effective test solution that provides accuracy, flexibility and scalability.

Abstract

The explosive growth of mobile devices and real-time applications, such as high-definition video, pushed current wireless local area network (WLAN) technology to its limits. The 802.11ac standard, built upon the success of 802.11n, addresses this challenge by providing a new set of WLAN capabilities offering increased speed, reliability and quality of wireless communications.

Innovative design techniques and the desire to minimize manufacturing costs necessitate comprehensive testing during the R&D and design verification test stages of new WLAN devices. Design validation engineers must ensure that their 802.11ac designs will perform well under the most demanding modulation schemes, including MIMO spatial multiplexing configurations.

This document describes how Agilent’s PXI modular hardware and related software applications provide a scalable and cost-effective radio frequency (RF) test solution enabling flexible signal generation and accurate signal analysis for testing 802.11ac transmitters and receivers.

Figure 1. Agilent 802.11ac MIMO R&D / DVT test solution.
Introduction

In today’s high growth wireless market, the WLAN 802.11n standard reached limitations to meet the consumer’s demand for higher WLAN capacity and higher quality mobile technology. Demand for higher throughput drove the development of a new set of capabilities addressed by WLAN 802.11ac.

802.11ac feature enhancements include:
- Wider channels up to 160 MHz
- Multi-user MIMO (MU-MIMO)
- 256 QAM, up to 8 spatial streams
- Faster data rates up to 6.93 Gbps

Test systems must be capable of supporting these new technically demanding test requirements, while also providing accuracy, speed, flexibility and scalability.

Application overview

Design validation engineers must ensure that their 802.11ac designs will perform well under the most demanding modulation schemes, even for the most challenging MIMO spatial multiplexing configurations. Transmitter tests require fast and precise signal analysis to validate 802.11ac MIMO transmitter performance. A multi-channel vector signal analyzer (VSA) providing support of physical (PHY) layer measurements is required.

A PXIe VSA can be used to demodulate the multi-stream waveform, and transmitter performance can be determined through the analysis of PHY layer measurements using 89600 VSA software.

Receiver tests require the highest quality reference signals with very low distortion. A vector signal generator (VSG) capable of creating 802.11ac compliant waveforms with 80 + 80 MHz and full 160 MHz bandwidth support is required.

Receiver testing requires full support for 802.11ac standards-based generation with channel emulation and waveform sequencing capability to support receiver measurements such as sensitivity.

Test systems must meet today’s functional demands for 802.11ac, while maintaining backward compatibility to support 802.11n, and be flexible enough to support bandwidths up to 160 MHz.

Solution

Agilent Technologies provides a cost-effective radio frequency (RF) test solution for 802.11ac MIMO R&D/DVT with its M9391A PXIe VSA, M9381A PXI VSG and related software applications.

The M9391A PXIe VSA is a modular solution that provides frequency coverage up to 6 GHz and works seamlessly with Agilent’s 89600 VSA software to provide a cost-effective solution for 802.11ac MIMO transmitter testing. The M9391A supports RF modulation bandwidths up to 160 MHz and up to 4 synchronized channels with < ±5 ns of synchronization accuracy.

The M9381A PXIe VSG with Signal Studio software provides full support for 802.11ac standards-based signal generation for receiver testing. The M9381A supports up to 160 MHz bandwidth signal generation and up to 4 channels with < 20 ns of synchronization accuracy.
Solution details

System setup

A 4-channel VSA and 4-channel VSG (4x4) 802.11ac MIMO measurement setup is shown in Figure 3. The setup includes two M9018A PXIe 18-slot chassis and two internal M9036A embedded controllers. Four M9381A PXIe VSGs are housed in one chassis and four M9391A PXIe VSAs in the other. Each chassis also includes a single M9300A reference to drive the 10 MHz reference on the backplane of the PXI chassis and synchronize the timing of multiple modules.

Transmitter test

The M9391A VSA supports input signals from 10 MHz to 6 GHz, easily covering the 802.11ac frequency bands and enables scalable deployment, with 1 to 4 channels configurable in a single 18-slot PXI chassis.

Agilent’s 89600 VSA software controls the M9391A PXIe VSAs and provides the measurement algorithms for MIMO WLAN transmitter testing. Analysis of a 2-channel MIMO configuration with 2-streams at 80 MHz is shown in Figure 4.

Transmitter performance can be determined through the analysis of PHY-layer measurements such as error vector magnitude (EVM), cross-channel isolation, channel flatness and spectrum measurements such as occupied bandwidth and channel power.

Receiver test

For testing receivers, Agilent’s M9381A VSG with Signal Studio software provides full support of 802.11ac standards-based signals. Signal Studio software is used to generate 802.11ac standard compliant waveforms including MIMO/MU-MIMO, MAC layer, ARB-based channel fading models, multi-frame and sequencer playback for PER/sensitivity tests. The M9381A VSG provides frequency coverage up to 6 GHz, support for 256 QAM, and RF modulation bandwidth up to 160 MHz with ±0.5 dB flatness. Agilent’s 802.11ac MIMO test solution provides the accuracy, speed, flexibility and scalability required during research and development and design verification test of 802.11ac MIMO transmitters and receivers.

Ordering information

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>M9391A</td>
<td>PXIe vector signal analyzer 1 MHz – 6 GHz</td>
</tr>
<tr>
<td>1-4</td>
<td>M9381A</td>
<td>PXIe vector signal generator 1 MHz – 6 GHz</td>
</tr>
<tr>
<td>1-2</td>
<td>M9300A</td>
<td>PXI frequency reference</td>
</tr>
</tbody>
</table>

Optional

1	M9018A	PXIe 18-slot chassis
1	M9036A	PXIe embedded controller
1	89601B-200	89600 VSA software, transportable license
1	89601B-300	Hardware connectivity
1	89601B-BHJ	WLAN 802.11ac modulation analysis
1	89601B-B7Z	WLAN 802.11n modulation analysis
1	89601B-B7R	WLAN 802.11a/b/g modulation analysis
1	N7617B	Signal Studio for WLAN 802.11a/b/g/n/ac

Want to know more?

- 802.11 WLAN Test
 www.agilent.com/find/wlan
- Technical Overview: Testing New-generation Wireless LAN, publication number 5990-8856EN
- PXI RF Vector Signal Analyzer:
 www.agilent.com/find/M9391A
- PXI RF Vector Signal Generator:
 www.agilent.com/find/M9381A
- 89600 VSA software:
 www.agilent.com/find/89600
- Signal Studio software:
 www.agilent.com/find/N7617B
The modular tangram

The four-sided geometric symbol that appears in this document is called a tangram. The goal of this seven-piece puzzle is to create identifiable shapes—from simple to complex. As with a tangram, the possibilities may seem infinite as you begin to create a new test system. With a set of clearly defined elements—hardware, software—Agilent can help you create the system you need, from simple to complex.

Challenge the Boundaries of Test

Agilent Modular Products

myAgilent
www.agilent.com/find/myagilent

www.axiestandard.org

www.pxisa.org

Three-Year Warranty
www.agilent.com/find/ThreeYearWarranty

www.agilent.com/quality

Agilent SolutionPartners
www.agilent.com/find/solutionpartners

PICMG and the PICMG logo, CompactPCI and the CompactPCI logo, AdvancedTCA and the AdvancedTCA logo are US registered trademarks of the PCI Industrial Computers Manufacturers Group. “PCIe” and “PCI EXPRESS” are registered trademarks and/or service marks of PCI-SIG.

www.agilent.com
www.agilent.com/find/modular
www.agilent.com/find/pxi-mimo
www.agilent.com/find/wlan

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East

Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700
*0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0208-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus
(BP-10-03-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013
Published in USA, November 20, 2013
5991-3582EN